nursesrevision@gmail.com

stomatitis

Stomatitis lecture notes

Nursing Notes - Malnutrition

STOMATITIS

REVIEW: Anatomy of the Gastrointestinal (GI) Tract

The gastrointestinal (GI) tract is a continuous, hollow, muscular tube that serves as the primary pathway for digestion and absorption. It is approximately 23 to 26 feet (7 to 8 meters) long and extends from the mouth to the anus, passing through the thoracic and abdominopelvic cavities.

Esophagus
  • Location: The esophagus is a collapsible tube located in the mediastinum of the thoracic cavity, situated anterior to the spine and posterior to the trachea and heart.
  • Structure: It is about 25 cm (10 inches) in length. Its muscular walls become distended (stretched) to allow the passage of a food bolus.
  • Passage: It passes through the diaphragm at an opening known as the diaphragmatic hiatus to connect to the stomach. The remaining portion of the GI tract is located within the peritoneal cavity.
  • Stomach
  • Location: The stomach is a J-shaped, distensible pouch situated in the upper left portion of the abdomen, just under the left diaphragm and to the left of the midline.
  • Capacity: It has a capacity of approximately 1500 mL.
  • Regions: The stomach is divided into four main regions:
    • Cardia: The entrance area surrounding the esophageal opening.
    • Fundus: The rounded upper portion superior and to the left of the cardia.
    • Body: The large central portion.
    • Pylorus: The lower outlet portion that connects to the small intestine.
  • Sphincters: Two smooth muscle sphincters regulate the passage of food:
    • The Lower Esophageal Sphincter (LES) or cardiac sphincter surrounds the esophagogastric junction (inlet). When it contracts, it closes off the stomach from the esophagus, preventing reflux.
    • The Pyloric Sphincter is a ring of circular smooth muscle at the junction of the pylorus and the duodenum. It controls the rate at which partially digested food (chyme) leaves the stomach and enters the small intestine.
  • Small Intestine
  • Structure: The small intestine is the longest segment of the GI tract, accounting for about two-thirds of its total length. It is highly coiled and folded upon itself, providing a massive surface area of approximately 7000 cm² for secretion and absorption.
  • Function: It is the primary site where nutrients from digested food enter the bloodstream through the intestinal walls.
  • Anatomic Parts: It is divided into three sections:
    • Duodenum: The first and shortest part (about 10 inches), where chyme from the stomach is mixed with bile and pancreatic secretions. The common bile duct and pancreatic duct empty into the duodenum at the ampulla of Vater.
    • Jejunum: The middle section, which is the primary site for nutrient absorption.
    • Ileum: The final and longest section, which absorbs vitamins (especially B12) and bile salts.
  • Ileocecal Valve: This valve is located at the junction of the ileum and the cecum (the beginning of the large intestine). It controls the passage of intestinal contents into the large intestine and prevents the backflow (reflux) of bacteria. The vermiform appendix is a small, finger-like pouch attached near this junction.
  • Large Intestine
  • Structure: The large intestine frames the small intestine and consists of several segments:
    • Ascending Colon: Travels up the right side of the abdomen.
    • Transverse Colon: Extends across the upper abdomen from right to left.
    • Descending Colon: Travels down the left side of the abdomen.
  • Terminal Portion: The end of the large intestine consists of two parts: the S-shaped sigmoid colon and the rectum.
  • Function: Its primary functions are the absorption of water and electrolytes from indigestible food matter and the storage of feces before defecation.
  • Rectum and Anus
    • The rectum is the final section of the large intestine, terminating at the anus.
    • The anus is the external opening of the GI tract. Its outlet is regulated by the internal and external anal sphincters, which are a network of smooth and striated (voluntary) muscles, respectively.

    Blood and Nerve Supply of the GI Tract

    Blood Supply
    • Arterial blood is supplied by arteries originating from the thoracic and abdominal aorta, primarily the gastric artery (for the stomach) and the superior and inferior mesenteric arteries (for the intestines).
    • Venous blood, rich in absorbed nutrients, is drained from these organs by veins that merge to form the hepatic portal vein. This nutrient-rich blood is carried directly to the liver for processing.
    • The blood flow to the GI tract is significant, accounting for about 20% of total cardiac output at rest and increasing substantially after eating.
    Nerve Supply
    • The GI tract is innervated by both the sympathetic and parasympathetic divisions of the autonomic nervous system.
      • Sympathetic nerves generally have an inhibitory effect: they decrease gastric secretions and motility, and cause sphincters and blood vessels to constrict.
      • Parasympathetic nerves (primarily the vagus nerve) generally have a stimulatory effect: they increase peristalsis and secretory activities, and cause sphincters to relax.
    • The only portions of the GI tract under voluntary control are the upper esophagus (for swallowing) and the external anal sphincter (for defecation).

    Primary Functions of the Digestive System

    1. Ingestion & Digestion: To take in food and break it down from complex particles into its molecular form (e.g., carbohydrates into glucose).
    2. Absorption: To absorb the small molecules produced by digestion into the bloodstream and lymphatic system for use by the body.
    3. Elimination: To eliminate undigested foodstuffs, unabsorbed nutrients, and other waste products from the body as feces.

    General Signs and Symptoms of Digestive System Disorders

    • Stomatitis: Inflammation of the mouth (oral mucosa).
    • Nausea and Vomiting: Nausea is a feeling of discomfort in the epigastrium with a conscious desire to vomit. Vomiting is the forceful ejection of partially digested food and secretions from the upper GI tract.
    • Dysphagia: Difficulty in swallowing.
    • Dyspepsia (Indigestion): A symptom complex including post-meal fullness, heartburn, bloating, and possibly nausea.
    • Achalasia: Absent or ineffective peristalsis of the distal esophagus, accompanied by the failure of the lower esophageal sphincter to relax in response to swallowing.
    • Hematemesis: Bloody vomitus, which can appear as fresh, bright red blood or have a 'coffee ground' appearance (dark, grain-digested blood).
    • Melena: Black, tarry, and often foul-smelling stools caused by the digestion of blood in the GI tract. The black appearance is due to the presence of iron.
    • Changes in Bowel Habits: This can include:
      • Constipation: An abnormal infrequency of defecation or the passage of abnormally hard stools.
      • Diarrhea: The passage of 3 or more loose or watery stools in 24 hours.
    • Fecal Incontinence: The involuntary passage of stool, which may be due to piles, trauma, surgery, infection, etc.
    • Abdominal Distension: Swelling or enlargement of the abdomen.
    • Abdominal Pain and Tenderness: Can be diffuse, localized, dull, burning, or sharp.
    • Abdominal Rigidity: Involuntary stiffness of the abdominal muscles, often indicating peritoneal irritation.
    • Rebound Tenderness: Pain upon removal of pressure rather than application of pressure to the abdomen.
    • Decreased or Absent Bowel Sounds: May indicate an ileus or obstruction.
    • Tenesmus: A sensation of incomplete bowel emptying.
    • Gas or Bloating (Flatulence): Excessive stomach or intestinal gas.
    • Jaundice: Yellowish discoloration of the skin and sclera due to elevated bilirubin levels.
    • Hepatomegaly/Splenomegaly: Enlargement of the liver and spleen, respectively.
    • Pruritus and Urticaria: Itching and hives, which can be associated with liver disorders.
    • Shock: Particularly hypovolemic shock, due to fluid or blood loss from the GI tract.

    Disorders of the Digestive System

    Stomatitis

    Stomatitis refers to a broad range of inflammatory conditions affecting the epithelial lining of the oral mucosa, which is the moist membrane that lines the inside of the mouth. This inflammation can manifest in various ways, from mild redness and discomfort to severe ulceration and pain, significantly impacting a person's ability to eat, speak, and maintain oral hygiene. Stomatitis is not a single disease but rather a symptom or a group of symptoms that can arise from a diverse array of local (within the mouth) and systemic (affecting the entire body) factors.

    Causes and Etiology of Stomatitis

    The etiology of stomatitis is multifaceted, often involving an interplay of various predisposing and precipitating factors. Understanding the underlying cause is crucial for effective diagnosis and management.

    Trauma:
    • Mechanical Injury: This is a common cause, including accidental biting of the cheek or tongue, irritation from sharp or abrasive foods (e.g., hard crackers, bones), ill-fitting dental appliances (braces, dentures), or vigorous toothbrushing.
    • Thermal Injury: Burns from hot foods or liquids.
    • Chemical Injury: Exposure to irritating chemicals or highly acidic substances.
    Infections: Oral mucosa is susceptible to various microbial invasions.
    • Bacterial Infections: Can lead to conditions like acute necrotizing ulcerative gingivitis (ANUG), impetigo affecting the perioral region, or secondary infections of existing lesions.
    • Fungal Infections:
      • Candida albicans: Most commonly associated with oral thrush, presenting as creamy white patches that can be scraped off, revealing reddened, often bleeding, underlying tissue. It is particularly common in infants, immunocompromised individuals (e.g., HIV/AIDS patients, those undergoing chemotherapy), or those on long-term antibiotic or corticosteroid therapy.
    • Viral Infections:
      • Herpes Simplex Virus (HSV): Primarily HSV-1, causing primary herpetic gingivostomatitis (especially in children) characterized by widespread oral ulcers, fever, and malaise, or recurrent herpes labialis (cold sores) around the lips.
      • Varicella-Zoster Virus (VZV): Causes chickenpox (primary infection) and shingles (reactivation), both of which can involve painful oral lesions.
      • Other Viruses: Coxsackievirus (hand, foot, and mouth disease), Epstein-Barr Virus (infectious mononucleosis), and Human Papillomavirus (oral warts).
    Irritants: Chronic exposure to certain substances can significantly damage the oral mucosa.
    • Tobacco Use: Smoking, chewing tobacco, and snuff are major irritants, increasing the risk of leukoplakia, erythroplakia, and oral cancers, often preceded by chronic stomatitis.
    • Alcohol Consumption: Heavy alcohol use is corrosive to oral tissues and is a significant risk factor for oral lesions and cancers, especially when combined with tobacco.
    • Spicy Foods: Can cause temporary irritation and inflammation in sensitive individuals.
    Systemic Disorders: Stomatitis can be an oral manifestation of various underlying systemic diseases, acting as an important diagnostic clue.
    • Renal Disorders: Uremic stomatitis can occur in patients with severe kidney failure, characterized by a white, thick, or pseudomembranous coating on the oral mucosa, often with a metallic taste due to urea breakdown products.
    • Liver Disorders: Chronic liver disease can lead to oral mucosal changes due to metabolic disturbances.
    • Hematologic Disorders:
      • Anemia (e.g., iron deficiency anemia, pernicious anemia): Can cause atrophic glossitis (smooth, red, painful tongue), angular cheilitis (cracking at mouth corners), and general oral soreness.
      • Leukemia, Agranulocytosis: Can lead to severe gingivitis, ulcerations, and opportunistic infections due to compromised immune function.
    • Autoimmune Diseases:
      • Pemphigus Vulgaris, Bullous Pemphigoid: Autoimmune blistering diseases that can severely affect the oral mucosa, causing painful erosions.
      • Lichen Planus: A chronic inflammatory condition that can present as white lacy patterns, red erosions, or ulcers in the mouth.
      • Systemic Lupus Erythematosus (SLE): Oral lesions (ulcers, red patches) can be a feature.
      • Crohn's Disease, Ulcerative Colitis (Inflammatory Bowel Diseases): Can cause oral aphthous ulcers or granulomatous lesions.
    • Diabetes Mellitus: Poorly controlled diabetes can predispose individuals to candidiasis and other oral infections due to impaired immune response and higher glucose levels in saliva.
    Medication Side Effects: Many pharmacological agents can induce stomatitis.
    • Chemotherapeutic Drugs: Mucositis (a severe form of stomatitis) is a very common and debilitating side effect of many cancer chemotherapeutic agents (e.g., methotrexate, 5-fluorouracil) and radiation therapy to the head and neck, causing widespread painful ulcerations.
    • Antibiotics: Can disrupt the normal oral flora, leading to opportunistic infections like candidiasis.
    • Anticonvulsants (e.g., phenytoin): Can cause gingival hyperplasia (overgrowth of gum tissue).
    • Immunosuppressants: Increase susceptibility to oral infections.
    • Other Drugs: Certain antihypertensives, antidepressants, and anti-inflammatory drugs can also cause oral side effects.
    Nutritional Deficiencies: Inadequate intake or absorption of specific nutrients can severely compromise oral tissue health.
    • B Vitamins (especially B1, B2, B3, B6, B12, Folate): Deficiencies can lead to glossitis, angular cheilitis, and recurrent aphthous ulcers.
    • Iron: Iron deficiency anemia frequently causes atrophic glossitis, oral burning, and angular cheilitis.
    • Vitamin C (Ascorbic Acid): Severe deficiency (scurvy) results in swollen, bleeding gums, tooth mobility, and poor wound healing.
    • Vitamin A: Important for maintaining healthy epithelial tissues; deficiency can lead to dry mouth and increased susceptibility to infection.
    • Zinc: Essential for immune function and wound healing; deficiency can impact oral health.
    Poor Oral Hygiene: A primary contributor to various oral pathologies.
    • Allows for the accumulation of plaque and calculus, leading to gingivitis and periodontitis.
    • Promotes the overgrowth of pathogenic microorganisms (bacteria, fungi), increasing the risk of infections.
    Denture-Related Issues:
    • Poor Denture Hygiene: Inadequate cleaning allows for biofilm formation and microbial proliferation, particularly Candida species, leading to denture stomatitis (inflammation of the mucosa under the denture).
    • Ill-Fitting Dentures: Cause chronic frictional trauma and pressure points, leading to localized inflammation, sores, and hyperplastic tissue reactions.
    • Continuous Night-Time Wear: Deprives the underlying mucosa of exposure to saliva and oxygen, creating an environment conducive to microbial growth and inflammation.
    Other Factors:
    • Hormonal Changes: Fluctuations during puberty, menstruation, pregnancy, and menopause can influence oral health and susceptibility to inflammation.
    • High Intake of Sugary Foods: Promotes an acidic oral environment and provides substrate for bacterial growth, contributing to dental caries and potentially exacerbating inflammation.
    • Stress: Psychological stress can weaken the immune system and has been linked to the exacerbation of conditions like recurrent aphthous stomatitis.
    • Allergies: Allergic reactions to dental materials, food components, or oral hygiene products can trigger localized inflammatory responses.
    • Genetic Predisposition: Some individuals may be genetically more prone to certain types of stomatitis, such as recurrent aphthous ulcers.

    Clinical Manifestations of Stomatitis

    The signs and symptoms of stomatitis vary depending on the cause, location, and severity of the inflammation, but commonly include:

    • Changes in Salivation: Can range from excessive salivation (sialorrhea), often due to irritation or pain, to pronounced dryness of the mouth (xerostomia), which can exacerbate discomfort and increase infection risk.
    • Halitosis (Bad Breath): A common symptom, resulting from bacterial overgrowth, tissue breakdown, or metabolic products associated with certain systemic diseases.
    • Glossitis: Inflammation of the tongue, causing it to appear red, swollen, smooth (due to atrophy of papillae), and often exquisitely painful. This can be a sign of nutritional deficiencies (e.g., B vitamins, iron) or systemic diseases.
    • Oral Ulcers: Painful, open sores that can occur on any part of the oral mucosa, including the gums, palate, buccal mucosa (inner cheeks), and lips. These can range from small aphthous ulcers to large, irregular erosions characteristic of viral infections or autoimmune conditions.
    • Thrush (Oral Candidiasis): Characterized by creamy white, cottage-cheese-like patches on the tongue, inner cheeks, palate, or throat. These lesions are typically adherent but can be scraped off, revealing an erythematous (red) and sometimes bleeding base. It is a hallmark of fungal infection, especially in immunocompromised or debilitated individuals (e.g., infants, HIV/AIDS patients, those on prolonged antibiotics or corticosteroids).
    • Gingivitis: Swelling, redness, and bleeding of the gums, often an early sign of periodontal disease but can also be part of a generalized stomatitis.
    • Denture Stomatitis: A specific form of inflammation seen in denture wearers, presenting as reddening and sometimes swelling of the mucosa directly under the denture-bearing area, often associated with a fungal infection.
    • Dysphagia and Odynophagia: Difficulty and pain during swallowing, respectively, especially if the inflammation extends to the throat or pharynx.
    • Dysgeusia: Altered taste sensation.
    • Pain and Discomfort: Ranging from a mild burning sensation to severe, constant pain that interferes with eating and speaking.

    Investigations and Diagnosis

    Diagnosing stomatitis involves a thorough clinical examination and, often, specific laboratory tests to identify the underlying cause.

    Mouth Swab: A sample taken from the affected area for:
    • Microscopy: Direct visualization of microorganisms (e.g., fungal hyphae in candidiasis).
    • Culture and Sensitivity: To grow and identify bacterial or fungal pathogens and determine their susceptibility to various antimicrobial agents.
    • PCR (Polymerase Chain Reaction) or Viral Culture: To detect viral DNA/RNA (e.g., HSV).
    Blood Tests:
    • Complete Blood Count (CBC): To check for signs of anemia, infection, or other hematologic abnormalities.
    • Nutritional Deficiencies: Serum levels of vitamins (e.g., B12, folate) and minerals (e.g., iron, ferritin).
    • Inflammatory Markers: ESR (Erythrocyte Sedimentation Rate) or CRP (C-reactive protein) if systemic inflammation is suspected.
    • Rapid Plasma Reagin (RPR) or VDRL: Blood tests for syphilis, which can cause oral lesions (e.g., mucous patches, gummas).
    • HIV Serology: To rule out HIV/AIDS, as these patients are highly susceptible to recurrent and severe oral infections, particularly candidiasis and herpes.
    • Random Blood Sugar (RBS) or HbA1c: To screen for or monitor diabetes, as hyperglycemia can promote fungal growth and impair healing.
    • Liver and Kidney Function Tests: To assess for underlying systemic diseases (e.g., uremic stomatitis).
    • Autoantibody Tests: If an autoimmune condition is suspected (e.g., ANA for SLE, anti-desmoglein for pemphigus).
    Biopsy: In cases of persistent, atypical, or suspicious lesions (e.g., white patches that cannot be scraped off, chronic ulcers), a tissue biopsy is essential to rule out dysplasia or malignancy.
  • Imaging Studies: Rarely needed for primary stomatitis, but may be used to investigate underlying systemic causes or complications.
  • Treatment and Management Strategies

    Effective management of stomatitis is multimodal, focusing on treating the underlying cause, alleviating symptoms, and preventing recurrence.

    Treat the Underlying Cause: This is the cornerstone of effective therapy. Antimicrobial Therapy:
    • Broad-spectrum Antibiotics: For identified bacterial infections (e.g., metronidazole for ANUG).
    • Antifungals: For oral candidiasis, systemic antifungals (e.g., fluconazole, itraconazole) may be necessary for widespread or resistant infections, in addition to topical agents.
    • Antivirals: For severe or recurrent viral infections (e.g., acyclovir, valacyclovir for HSV).
  • Nutritional Supplementation: Correcting identified vitamin or mineral deficiencies through dietary changes and/or supplements.
  • Management of Systemic Diseases: Controlling underlying conditions like diabetes, kidney disease, or autoimmune disorders.
  • Discontinuation or Adjustment of Medications: If a drug is identified as the cause, a physician may consider adjusting the dosage or switching to an alternative medication.
  • Correction of Traumatic Factors: Removing sharp food edges, adjusting or replacing ill-fitting dental appliances.
  • Oral Hygiene Measures: Meticulous oral hygiene is fundamental to both treatment and prevention.
    • Saline Rinses: Rinsing the mouth 3-4 times a day with a warm salt solution (e.g., 1/2 teaspoon of salt in 1 cup of warm water) helps to soothe inflamed tissues, cleanse the mouth, and promote healing.
    • Antiseptic Mouthwashes:
      • Hydrogen Peroxide Solution (6%): Diluted (e.g., 15 ml in 200 ml of warm water) can be used as an oxygenating rinse, particularly beneficial for anaerobic infections and debridement.
      • Chlorhexidine Mouthwash (0.2%): An effective broad-spectrum antiseptic, used twice daily, helps reduce bacterial load and plaque formation. Note: Can cause temporary tooth staining with prolonged use.
    • Gentle Brushing: Using a soft-bristled toothbrush and non-irritating toothpaste to clean teeth and gums gently, avoiding affected areas if too painful initially.
  • Denture Care: Specific instructions for denture wearers are vital to prevent and treat denture stomatitis.
    • Remove Dentures at Night: Allows the oral mucosa to rest and be exposed to saliva and oxygen.
    • Improve Denture Hygiene: Regular cleaning by brushing the denture and soaking it daily in an appropriate denture cleanser (e.g., hypochlorite cleanser – 10 drops of household bleach in a cup of water, or commercial denture tablets). The fitting surface of the denture should also be brushed to remove accumulated plaque and fungi.
    • Replace Ill-Fitting Dentures: Essential to eliminate chronic trauma and pressure points.
  • Dietary Modification:
    • Reduce Irritants: Avoid highly acidic, spicy, salty, or very hot/cold foods and beverages that can irritate inflamed mucosa.
    • Soft, Bland Diet: Encourage consumption of soft, bland, and nutrient-dense foods (e.g., mashed potatoes, soft cooked vegetables, pureed soups, yogurt) to ensure adequate nutrition without causing further discomfort.
    • Reduce Sugar Intake: Especially important in cases of candidiasis, as sugar promotes fungal growth.
    • Hydration: Drink plenty of fluids to maintain oral moisture and prevent dehydration.
  • Pharmacological Treatment (Symptomatic Relief and Specific Therapies):
    • Antifungals:
      • Nystatin Suspension (100,000 IU/mL): A common topical antifungal for oral thrush. Typically, the patient is instructed to "swish and swallow" 5-10 ml 4-6 times daily for 7-14 days (or at least 48 hours after symptoms resolve). The "swish and swallow" method ensures contact with the oral mucosa and allows some medication to reach the esophagus if candidiasis has extended.
      • Clotrimazole Troches: Lozenges that dissolve slowly in the mouth, providing prolonged contact time with the oral mucosa.
    • Topical Medications:
      • Topical Anesthetics: Viscous lidocaine or benzocaine preparations can be applied directly to painful ulcers before meals to allow for easier eating.
      • Corticosteroids: Topical steroids (e.g., triamcinolone acetonide in an adhesive paste) can be used for non-infectious inflammatory conditions like aphthous ulcers or lichen planus to reduce inflammation and promote healing.
      • Protective Barriers: Over-the-counter gels or rinses that form a protective barrier over ulcers, shielding them from irritation.
    • Analgesics (Pain Relievers):
      • Systemic Analgesics: Over-the-counter pain relievers like Paracetamol (acetaminophen) (e.g., 500mg or 1g every 4-6 hours, not exceeding daily maximums) or NSAIDs (non-steroidal anti-inflammatory drugs like ibuprofen) can help manage pain and inflammation, especially in widespread or severe cases. Duration of use typically 3 to 5 days, or as directed by a healthcare professional.
      • Topical Analgesics: As mentioned above, for localized pain relief.
    • Sialagogues: If xerostomia is a significant issue, medications or products that stimulate saliva flow (e.g., pilocarpine) or artificial saliva substitutes may be beneficial.
  • Patient Education: Educating the patient on the importance of adhering to treatment, maintaining good oral hygiene, and recognizing signs of recurrence is vital for long-term management.
  • Complications of Stomatitis

    If left untreated or improperly managed, stomatitis can lead to a range of complications that can significantly impact a patient's health and quality of life. These complications can be localized to the oral cavity or have systemic repercussions.

  • Severe Pain and Discomfort: Persistent and intense pain is perhaps the most immediate and debilitating complication. It can severely interfere with daily activities.
  • Nutritional Deficiencies and Malnutrition:
    • Difficulty and pain upon eating lead to reduced food intake.
    • This can result in significant weight loss, dehydration, and deficiencies in essential macro and micronutrients, particularly in children, elderly, or already debilitated individuals.
    • In severe cases, it may necessitate alternative feeding methods like nasogastric tube feeding.
  • Dehydration: Painful swallowing and general discomfort can lead to inadequate fluid intake, increasing the risk of dehydration, especially in vulnerable populations.
  • Spread of Infection:
    • Uncontrolled local infections (bacterial, fungal, viral) can spread beyond the oral cavity to adjacent structures (e.g., pharynx, esophagus, larynx) or even enter the bloodstream (sepsis), leading to more severe systemic infections, particularly in immunocompromised patients.
    • Oral candidiasis can extend to cause esophagitis.
  • Speech Impairment (Dysarthria): Significant inflammation and pain can make speaking difficult and unclear.
  • Psychological Impact:
    • Chronic pain and difficulty with eating and speaking can lead to social isolation, anxiety, and depression.
    • Halitosis associated with stomatitis can also cause embarrassment and affect self-esteem.
  • Impaired Oral Health:
    • Difficulty with brushing and flossing due to pain can lead to increased plaque accumulation, gingivitis, and progression to periodontitis (gum disease) and dental caries.
    • Chronic inflammation can sometimes lead to precancerous lesions, especially if associated with irritants like tobacco and alcohol, or certain infectious agents (e.g., HPV).
  • Chronic Ulceration and Scarring: Persistent or recurrent ulcers can lead to chronic inflammation and, in rare cases, scarring that might affect oral function.
  • Impact on Underlying Systemic Conditions: In patients with chronic diseases (e.g., diabetes, autoimmune disorders), severe stomatitis can complicate the management of their primary condition and reduce their overall quality of life.
  • Prevention of Stomatitis

    Preventing stomatitis involves addressing the predisposing factors and maintaining optimal oral and general health. A proactive approach is key.

  • Maintain Excellent Oral Hygiene:
    • Regular Brushing: Brush teeth at least twice daily with a soft-bristled toothbrush and fluoride toothpaste.
    • Flossing: Floss daily to remove plaque and food particles from between teeth and under the gum line.
    • Antiseptic Mouthwashes: Use non-alcohol based mouthwashes as recommended by a dental professional, especially if prone to gum inflammation.
    • Tongue Cleaning: Gently clean the tongue to remove bacteria and food debris.
  • Regular Dental Check-ups:
    • Visit the dentist at least twice a year for professional cleaning and examination.
    • Early detection and management of dental problems (e.g., cavities, gum disease) and ill-fitting restorations can prevent irritation.
  • Proper Denture Care:
    • Remove dentures at night to allow oral tissues to rest.
    • Clean dentures daily using a denture brush and appropriate cleanser.
    • Ensure dentures fit well and are relined or replaced as needed to prevent trauma and pressure sores.
  • Balanced Nutrition:
    • Consume a diet rich in fruits, vegetables, whole grains, and lean proteins to ensure adequate intake of essential vitamins and minerals, especially B vitamins, iron, zinc, and vitamin C.
    • Consider nutritional supplements if dietary intake is insufficient or if specific deficiencies are identified.
  • Avoid Oral Irritants:
    • Tobacco and Alcohol: Abstain from or significantly reduce the use of tobacco products (smoking, chewing) and limit alcohol consumption, as these are major contributors to oral inflammation and malignancy.
    • Spicy and Acidic Foods: If prone to irritation, limit intake of excessively spicy, acidic, or abrasive foods.
    • Avoid Very Hot Beverages: Allow hot drinks to cool slightly before consuming.
  • Stay Hydrated: Drink plenty of water throughout the day to maintain adequate salivary flow and keep the oral mucosa moist. This helps in cleansing and protecting the mouth.
  • Manage Underlying Systemic Conditions:
    • Effectively manage chronic diseases such as diabetes, autoimmune disorders, and kidney disease, as good control can prevent oral manifestations.
  • Judicious Use of Medications:
    • Be aware of potential oral side effects of medications.
    • If undergoing chemotherapy or radiation to the head and neck, follow all recommended mucositis prevention protocols (e.g., cryotherapy, specific rinses).
  • Stress Reduction: Implement stress-reduction techniques, as stress can sometimes exacerbate conditions like recurrent aphthous stomatitis.
  • Address Traumatic Habits: Avoid habits like cheek biting, lip biting, or tongue thrusting that can cause chronic irritation.
  • Stomatitis lecture notes Read More »

    MALNUTRITION IN CHILDREN

    Nursing Notes - Malnutrition

    MALNUTRITION

    Malnutrition is a pathological state resulting from a relative or absolute deficiency or excess of one or more essential nutrients. It refers to any condition in which the body does not receive enough nutrients for proper function, encompassing both undernutrition and overnutrition.

    Forms of Malnutrition
    • Undernutrition: An insufficient intake of energy and nutrients to meet an individual's needs to maintain good health. This includes conditions like stunting, wasting, and being underweight.
    • Overnutrition: An excessive intake of nutrients, especially calories, leading to conditions like overweight and obesity.
    • Imbalance: Disproportionate consumption of nutrients, which can lead to adverse health effects even if calorie intake is adequate.
    • Specific Deficiency: A lack of one or more specific micronutrients (vitamins or minerals), such as iron deficiency or vitamin A deficiency.

    Causes and Risk Factors for Malnutrition

    • Inadequate Dietary Intake: This is a primary cause, where a child does not consume enough food, or the right kinds of food, to meet their body's needs. This is often linked to a lack of knowledge about adequate feeding practices or poor weaning methods.
    • Infections and Disease Conditions: Illness increases the body's metabolic needs while often decreasing appetite. Conditions like chronic diarrhea, malabsorption syndromes, childhood cancers, congenital heart defects, and cystic fibrosis impair the body's ability to absorb and utilize nutrients.
    • Poor Socioeconomic Status: Poverty, insufficient education, food insecurity, inadequate sanitation, and large family sizes are major contributing factors to malnutrition.
    • Cultural Influences: Deep-rooted beliefs, customs, food taboos, and specific cooking practices can restrict the intake of essential nutrients. For example, some cultures may deny children protein-rich foods like eggs or chicken.
    • Social and Political Factors:
      • Social issues like inadequate child spacing, neglect, or separation from parents put a child at risk.
      • Political instability and conflict displace populations, disrupting access to food and healthcare.
      • Natural disasters like droughts or floods can destroy crops and lead to famine.
    • Inadequate Health Services: Lack of access to primary healthcare, nutrition rehabilitation centers, and preventative services like immunization contributes to the cycle of illness and malnutrition.
    • Biological Factors: Premature babies have higher nutritional needs and are at greater risk. The nutritional status of the mother during pregnancy also plays a crucial role. Worm infestations are also a common cause, as parasites compete with the host for nutrients.

    PROTEIN-ENERGY MALNUTRITION (PEM)

    Protein-Energy Malnutrition (PEM), also known as Protein-Calorie Malnutrition (PCM), is a group of clinical conditions resulting from varying degrees of protein and/or energy (calorie) deficiency. It is primarily caused by an inadequate intake of food in both quantity and quality.

    Classification of PEM
    • Kwashiorkor: Primarily a deficiency of protein, with adequate or near-adequate energy intake.
    • Marasmus: A severe deficiency of both protein and calories (total energy).
    • Marasmic-Kwashiorkor: A mixed form with features of both Marasmus and Kwashiorkor. The child is wasted but also has edema.
    • Nutritional Dwarfing (Stunting): A chronic condition where a child has a significantly low height for their age due to long-term undernutrition, without other specific signs of Kwashiorkor or Marasmus.
    Kwashiorkor

    This condition is mainly found in preschool children (typically 1-3 years) after being weaned from breast milk onto a diet high in carbohydrates but low in protein. The name is said to mean "the sickness the older child gets when the new baby comes."

    Clinical Features of Kwashiorkor
    • Essential Features (Always Present):
      • Edema: Pitting edema is the hallmark sign, usually starting in the lower limbs and progressing to the face and upper limbs, giving a "moon face" appearance.
      • Growth Retardation: Marked failure to gain weight and height.
      • Muscle Wasting: Significant muscle wasting is present, but it can be masked by the edema and retention of some subcutaneous fat.
      • Psychomotor Changes: The child is typically apathetic, lethargic, irritable, and lacks interest in their surroundings. Appetite is poor.
    • Non-Essential Features (May or May Not Be Present):
      • Hair Changes: Hair becomes thin, dry, brittle, and may change to a reddish-brown or light color. It is easily pluckable. The "flag sign" (alternating bands of light and dark hair) indicates periods of poor nutrition.
      • Skin Changes: Characterized by "flaky paint" dermatosis, with patches of hyperpigmentation that peel off to reveal hypo-pigmented or raw skin underneath.
      • Hepatomegaly: Enlarged, fatty liver due to impaired synthesis of lipoproteins.
      • Associated Problems: Increased susceptibility to infections (GI tract, respiratory), vitamin deficiencies, and diarrhea due to villous atrophy.
    Marasmus

    This condition results from a severe, prolonged deficiency of all nutrients, especially energy (calories) and protein. It is common in infants and toddlers. It is also known as infantile atrophy.

    Clinical Features of Marasmus
    • Essential Features (Always Present):
      • Severe Wasting: Marked wasting of both muscle and subcutaneous fat. The child appears emaciated ("skin and bones").
      • Severe Growth Retardation: The child is significantly underweight (<60% of expected weight for age) and stunted.
      • No Edema: Absence of edema is a key distinguishing feature from kwashiorkor.
    • Non-Essential Features (May or May Not Be Present):
      • Appearance: The face appears shriveled and old ("wizened face") due to the loss of the buccal pad of fat. Loose skin folds are prominent, especially on the buttocks ("baggy pants").
      • Psychomotor Changes: The child is often irritable and fretful, but may also be apathetic. Unlike in kwashiorkor, the child usually has a good appetite (craving for food).
      • Hair and Skin: Hair may be thin and sparse, but changes are less pronounced than in kwashiorkor. The skin is dry, thin, and inelastic.
      • Associated Problems: Prone to infections, dehydration, anemia, and hypothermia. The liver is usually shrunken.

    Management of Severe Acute Malnutrition (SAM)

    Management depends on the severity of the condition and the presence of complications. It can take place at home, in a nutritional rehabilitation center, or in a hospital.

    Hospital-Based Management

    This is essential for children with severe PEM who have complications like severe edema, infections, dehydration, shock, or persistent loss of appetite. The WHO outlines a 10-step plan for inpatient management.

    1. Treat/Prevent Hypoglycemia: Give glucose or a sugar solution immediately.
    2. Treat/Prevent Hypothermia: Keep the child warm with blankets and skin-to-skin contact.
    3. Treat/Prevent Dehydration: Rehydrate slowly using a special low-osmolarity solution (ReSoMal), not standard ORS.
    4. Correct Electrolyte Imbalances: Provide potassium and magnesium supplements. Avoid diuretics for edema.
    5. Treat Infections: Administer broad-spectrum antibiotics, as signs of infection are often masked.
    6. Correct Micronutrient Deficiencies: Provide multivitamins, but give iron only after the initial stabilization phase (usually after week 2).
    7. Start Cautious Feeding: Begin with small, frequent feeds of a therapeutic starter formula (F-75).
    8. Achieve Catch-Up Growth: Gradually transition to a higher-calorie, higher-protein formula (F-100) or ready-to-use therapeutic food (RUTF) to promote rapid weight gain.
    9. Provide Sensory Stimulation and Emotional Support: Engage the child in play therapy and provide a caring environment to support developmental recovery.
    10. Prepare for Follow-Up After Discharge: Educate caregivers on continued feeding, hygiene, and the importance of regular follow-up visits.

    Micronutrient Deficiencies

    Vitamins and minerals are essential for bodily functions. Deficiencies can lead to specific disorders.

    Fat-Soluble Vitamins
    • Vitamin A: Essential for normal vision, immune function, and cell growth. Sources: Liver, egg yolk, butter, cheese, green leafy vegetables, yellow/orange fruits. Deficiency: Leads to night blindness and xerophthalmia (dry eyes).
    • Vitamin D: Promotes calcium and phosphorus absorption for bone mineralization. Sources: Sunlight, fortified milk, fish, egg yolk. Deficiency: Causes rickets in children (bone deformities) and osteomalacia in adults.
    • Vitamin E: An antioxidant that protects cells from damage. Sources: Vegetable oils, nuts, seeds. Deficiency: Is rare, but can cause neurological problems.
    • Vitamin K: Essential for blood clotting. Sources: Green leafy vegetables, soybeans. Deficiency: Leads to bleeding disorders due to prolonged clotting time.
    Water-Soluble Vitamins
    • Vitamin B Complex:
      • B1 (Thiamine): Causes Beriberi.
      • B2 (Riboflavin): Causes angular stomatitis (cracks at corners of the mouth), glossitis.
      • B3 (Niacin): Causes Pellagra (characterized by the 3 D's: Dermatitis, Diarrhea, Dementia).
      • B12 (Cyanocobalamin): Causes megaloblastic anemia. Not found in plant foods.
      • Folic Acid: Causes megaloblastic anemia and glossitis. Crucial for preventing neural tube defects in pregnancy.
    • Vitamin C (Ascorbic Acid): Essential for collagen formation, iron absorption, and immune function. Sources: Citrus fruits (oranges, lemons), guava, tomatoes, green vegetables. Deficiency: Causes Scurvy (swollen, bleeding gums; subcutaneous bruising; poor wound healing).
    Minerals
    • Calcium: For bone/teeth formation, muscle contraction, nerve conduction, and blood coagulation. Sources: Milk, fish, eggs, green leafy vegetables. Deficiency: Can contribute to rickets and osteoporosis.
    • Phosphorus: Key role in bone formation and energy metabolism. Widely available in foods, so deficiency is rare.
    • Iron: Essential for hemoglobin formation and oxygen transport. Sources: Meat, liver, eggs, fortified cereals. Deficiency: The most common nutritional deficiency worldwide, causing iron-deficiency anemia.
    • Iodine: Essential for thyroid hormone synthesis. Sources: Iodized salt, seafood. Deficiency: Causes goiter and cretinism (impaired neurological function).

    Diagnosis and Assessment of Malnutrition

    Nutritional Anthropometry

    This is the science of body measurements to assess nutritional status.

    • Weight-for-Age: A general indicator of nutritional status but does not distinguish between acute and chronic malnutrition.
    • Height-for-Age (Stunting): Indicates chronic or long-term malnutrition. A child who is stunted is too short for their age.
    • Weight-for-Height (Wasting): Indicates acute or recent malnutrition. A child who is wasted is too thin for their height.
    • Mid-Upper Arm Circumference (MUAC): A simple, effective measure to identify severe acute malnutrition, especially in community settings. A MUAC of <11.5 cm in children aged 6-59 months indicates SAM.
    • Growth Charts: Used to plot a child's measurements over time to monitor growth trends and identify deviations from the norm.
    Laboratory Investigations

    These are used to identify complications and associated conditions:

    • Blood Glucose: To check for hypoglycemia.
    • Serum Electrolytes: To assess for imbalances, especially potassium.
    • Complete Blood Count (CBC) & Hemoglobin: To check for anemia.
    • Blood Smear: To test for malaria parasites.
    • Blood/Urine Cultures: To identify underlying infections.

    MALNUTRITION IN CHILDREN Read More »

    Nutrition in Children

    Nutrition in Children

    Nursing Notes - Child Growth and Development

    Nutrition in Children

    Balanced and sufficient nutritional intake is paramount for children. It serves multiple critical functions: promoting optimal growth and development, protecting and maintaining health, preventing nutritional deficiency conditions and various illnesses, and building reserves for periods of starvation or dietary stress. The term 'nutrition' itself is derived from 'nutricus', meaning 'to suckle at the breast', highlighting its fundamental connection to early life sustenance.

    Defining Key Terms

    • Nutrition: More broadly, nutrition is the intricate process by which consumed food is utilized for the nourishment and structural and functional efficacy of every cell in the body. In essence, it is the science that explores the relationship between food and health.
    • Food: Refers to anything that nourishes the body, encompassing solids, liquids, and semi-solids. Food provides the essential components for growth, energy, and bodily functions.

    Classification of Foods and Nutrients

    • Food Classification: Foods are typically classified based on their primary macronutrient content: proteins, fats, and carbohydrates. They also contain essential micronutrients like vitamins and minerals. Foods can be categorized by their origin, such as animal (e.g., meat, dairy) or vegetable (e.g., fruits, vegetables, grains).
    • Nutrients: These are the organic and inorganic complexes derived from food that the body requires for proper functioning. There are approximately 50 different essential nutrients that are normally supplied through the foods we eat.
    • Macronutrients vs. Micronutrients:
      • Macronutrients: Needed in larger quantities, these provide energy and building blocks for the body. This category includes carbohydrates, proteins, and fats.
      • Micronutrients: Required in much smaller amounts, these are vital for various metabolic processes, enzyme functions, and overall health. This category includes vitamins and minerals.

    Nutritional Requirements in Children

    Nutritional requirements vary significantly among individuals, influenced by metabolic differences, genetic predisposition, age, sex, and activity levels. It's crucial to understand that no single food, except for mother's milk (for infants), meets all the essential nutritional requirements for a baby.

    The primary components of a child's nutritional needs include:

    1. Water

    Water is arguably the most critical nutrient for the maintenance of life. It constitutes a significant portion of a child's body weight (around 70%), underscoring its importance. Water is essential for:

    • Digestion: Facilitates the breakdown of food and absorption of nutrients.
    • Metabolism: Involved in countless biochemical reactions within cells.
    • Renal Excretion: Helps the kidneys filter waste products from the blood and excrete them as urine.
    • Temperature Regulation: Helps maintain a stable body temperature through mechanisms like sweating.
    • Transportation: Acts as a medium for transporting nutrients, oxygen, hormones, and waste products throughout the body.
    • Maintenance of Fluid Volume: Crucial for maintaining blood volume and cellular turgor.
    • Growth: Essential for the formation of new cells and tissues.

    Water is absorbed throughout the intestinal tract. A critical note: Lack of water (dehydration) can lead to death far more rapidly than starvation, emphasizing its immediate necessity.

    2. Calories (Energy)

    The energy value of foods is measured in terms of calories (or kilocalories). The amount of energy produced varies depending on the type of food and how it's metabolized. Children require more calories per kilogram of body weight than adults, primarily due to their rapid growth and higher metabolic rates. Calorie requirements gradually decrease as a child approaches adulthood.

    Factors influencing calorie requirements in children include:

    • Body size and surface area.
    • Rate of growth.
    • Level of physical activity.
    • Individual food habits.
    • Climate (e.g., more energy needed in colder environments).

    Consequences of imbalanced calorie intake:

    • Deficiency: Inadequate calorie intake leads to weight loss, growth failure, and can result in protein-energy malnutrition (PEM).
    • Excess: An excessive intake of calories results in increased weight gain and can lead to obesity, posing significant long-term health risks.

    The average energy expenditure in children is distributed as follows:

    • Basal Metabolism: 50% (energy needed for basic bodily functions at rest).
    • Growth: 12% (energy used for tissue synthesis and development).
    • Physical Activity: 25% (energy expended during movement and play).
    • Fecal Loss: 8% (energy lost in undigested food).
    • Specific Dynamic Action (Thermic Effect of Food): 5-10% (energy expended in the digestion, absorption, and metabolism of food).
    3. Proteins

    Proteins are fundamental macronutrients, essential for a myriad of bodily functions, particularly in growing children. They are crucial for:

    • Synthesis of Body Tissues: Vital for the rapid growth and development of new cells, muscles, organs, and other tissues.
    • Body Repair: Involved in the repair and maintenance of existing tissues.
    • Formation of Vital Compounds: Essential for the production of digestive juices, hormones, plasma proteins, enzymes, hemoglobin (Hb), and immunoglobulins (antibodies, which are critical for the immune system).
    • Maintenance of Osmotic Pressure and Acid-Base Equilibrium: Proteins in the blood help regulate fluid balance and maintain the body's pH.
    • Source of Energy: While primarily building blocks, proteins can be used as an energy source when carbohydrate and fat intake is inadequate.

    Excess proteins, if consumed, are converted by the liver into fat and stored in body tissues. The human body requires 20 different amino acids (of which 9 are essential and must be obtained from the diet) to synthesize its own proteins. Protein requirements depend on age, sex, and physiological factors, gradually decreasing as age increases. Deficiency of protein intake can lead to growth failure and specific forms of protein-energy malnutrition, such as Kwashiorkor.

    4. Carbohydrates

    Carbohydrates are the body's primary and most readily available source of energy. They are essential for providing fuel for all bodily functions, including brain activity, muscle contraction, and maintaining body temperature. Beyond energy, they are also:

    • Essential for Digestion and Absorption: Aid in the proper digestion and absorption of other foods.
    • Protein-Sparing Effect: When sufficient carbohydrates are available, proteins can be spared from being used for energy and thus fully utilized for their primary roles in growth and various repair processes.

    Excess carbohydrates are converted into glycogen and stored in the liver and muscles for later use, or converted into fat if stores are full. While essential, excessive intake of carbohydrates, particularly refined ones, can contribute to obesity, increase the risk of ischemic heart disease, cataracts, and dental caries.

    5. Fats

    Fats are a concentrated source of energy, supplying a significant portion (40-50%) of the energy needed for infants due to their high caloric density. Besides providing energy, fats serve several other crucial roles:

    • Protection and Support: Provide cushioning and support for vital organs.
    • Insulation: Help insulate the body, regulating temperature.
    • Absorption of Fat-Soluble Vitamins: Necessary for the absorption of vitamins A, D, E, and K.

    Deficiency of essential fatty acids can lead to growth retardation, skin disorders, and increased susceptibility to infections. Recommended daily intake for young children is approximately 25g/day, and for older children, around 22g/day, though these can vary based on individual needs and dietary recommendations.

    6. Vitamins

    Vitamins are organic compounds required in minimal amounts for various metabolic processes and overall health. They are categorized into:

    • Fat-soluble vitamins: A, D, E, K (stored in the body's fatty tissues).
    • Water-soluble vitamins: B-complex vitamins and Vitamin C (not stored in the body and need to be replenished daily).

    Since water-soluble vitamins are not stored, a consistent, adequate daily dietary intake is crucial to prevent deficiency diseases.

    7. Minerals

    Minerals are inorganic elements essential for a wide range of physiological functions. They are required by the human body for growth, repair of tissues, and regulation of vital body functions. Minerals often act as catalysts in biochemical reactions, facilitating enzyme activity. More than 50 different minerals are found in the human body, all of which must be derived from the foods we eat (e.g., calcium for bones, iron for blood, zinc for immunity).

    Breastfeeding: The Optimal Infant Nutrition

    Breastfeeding is widely recognized as the safest, cheapest, and best natural feeding method for infants. It comprehensively meets the nutritional, emotional, and psychological needs of the infant. Tragically, many infants in vulnerable populations die from preventable illnesses like diarrhea and acute respiratory infections partly due to insufficient breastfeeding practices. Breastfeeding offers numerous advantages:

    Advantages for the Infant:
    • Nutritive Value: Breast milk contains all the essential nutrients in the right proportions needed for optimal growth and development of a baby up to 6 months of age. Its composition dynamically changes to meet the baby's evolving needs.
    • Digestibility: Breast milk is easily digestible because it contains unique proteins that form soft curds, which are gentle on an infant's immature digestive system. It also contains the enzyme lipase, which aids in the digestion of fats and provides easily absorbable free fatty acids.
    • Protective Value (Immunological Benefits): It is rich in critical immune factors, including IgA, IgM antibodies, macrophages, lymphocytes, lysozyme, and interferon. These components provide passive immunity, making a breastfed baby significantly less likely to develop infections, especially gastrointestinal and respiratory tract infections.
    • Psychological Benefits: Breastfeeding promotes a profound close physical and emotional bond between mother and infant through frequent skin-to-skin contact, eye contact, and interaction, fostering security and attachment.
    Maternal Benefits of Breastfeeding:
    • Uterine Involution: Helps reduce the chance of postpartum hemorrhage by stimulating uterine contractions and aids in better uterine involution (the process by which the uterus returns to its pre-pregnancy size).
    • Iron Stores Recovery: Promotes the recovery of maternal iron stores, reducing the risk of postpartum anemia.
    • Natural Contraception: Provides a natural, though not foolproof, form of contraception, protecting the mother from pregnancy for the first 6 months, particularly when breastfeeding is carried out exclusively (Lactational Amenorrhea Method - LAM).
    • Sense of Fulfillment: Provides a deep sense of satisfaction and fulfillment for the mother, contributing to maternal well-being.
    • Weight Loss: Improves maternal slimming by consuming extra fat accumulated during pregnancy, as lactation requires significant energy expenditure.
    • Convenience: It is highly convenient and time-saving, requiring no preparation, sterilization, or specific temperatures.
    Family and Community Benefits:
    • Economical: Breastfeeding is economical, saving families significant money that would otherwise be spent on formula, bottles, and sterilization equipment.
    • Environmental: Reduces environmental waste associated with formula production and packaging.
    • Public Health: Contributes to healthier communities by reducing infant morbidity and mortality rates.

    Preparation for Breastfeeding

    Successful breastfeeding begins long before delivery:

    • Antenatal Period: Preparation must begin during the antenatal period (pregnancy).
    • Education on Benefits: Mothers should be thoroughly educated about the extensive benefits of breastfeeding for both themselves and their babies.
    • Breast Examination: Examination of the breasts to identify any potential problems (e.g., inverted nipples) that might affect latch and provide solutions.
    • Maternal Health: Prevention of micronutrient deficiencies in the mother, along with advice on rest, regular exercise, and hygienic measures, contributes to successful lactation.
    • Counseling and Support: Antenatal counseling and strong family support are crucial for building the mother's confidence and preparing her for the breastfeeding journey.

    Initiation of Breastfeeding

    Early and proper initiation of breastfeeding is critical:

    • Immediate Initiation: Breastfeeding should be initiated within the first half an hour to one hour of birth, or as soon as possible after delivery, known as "immediate" or "early" initiation.
    • Benefits of Early Suckling: Early suckling provides warmth and security for the newborn and ensures they receive colostrum, the "first milk."
    • Exclusive Breastfeeding: Mothers should be strongly advised for exclusive breastfeeding up to 6 months. This means giving no food or drink other than breast milk to neonates.
    • Avoidance of Supplements: This includes no water, glucose water, animal milk, gripe water, indigenous medicines, or routine vitamin and mineral drops/syrups unless medically indicated.

    Indicators of Adequate Breastfeeding (Signs of Sufficient Milk Intake)

    Parents can look for several signs to confirm their baby is getting enough breast milk:

    • Audible Swallowing: Hearing the baby swallow during feeds.
    • Let-down Sensation: The mother may feel a tingling or fullness as milk is released from the breast.
    • Wet Nappies: 6 or more wet nappies (diapers) in 24 hours.
    • Breast Changes: Breasts feeling full before a feed and noticeably softer afterwards.
    • Bowel Movements: Frequent, soft bowel movements, typically 3-8 times in 24 hours (can decrease after the first few weeks).
    • Average Weight Gain: Consistent and appropriate weight gain as monitored by a healthcare professional.
    • Baby's Demeanor: Baby sleeps well, does not cry excessively, has good muscle tone, and healthy skin.

    Composition of Breast Milk

    Breast milk composition dynamically changes at different stages in the postnatal period to precisely fulfill the evolving needs of the baby:

    • Colostrum:
      • Secreted during the first 3 days after delivery.
      • Characterized by its thick, yellow appearance and small quantities.
      • Extremely rich in antibodies and immune cells, along with higher amounts of proteins and fat-soluble vitamins, providing crucial early protection.
    • Transitional Milk:
      • Secreted during the first 2 weeks of the postnatal period, following colostrum.
      • Bridge between colostrum and mature milk, with increased fat and sugar content as the milk volume increases.
    • Mature Milk:
      • Secreted from 10-12 days after delivery onwards.
      • Appears more watery but contains all the necessary nutrients in balanced proportions for optimal growth and development of the baby.
    • Preterm Milk:
      • Produced by mothers who deliver prematurely.
      • Contains specific nutrients and higher protein content tailored to the unique developmental needs and increased vulnerability of premature infants.
    • Foremilk:
      • The milk obtained at the beginning of a feed.
      • It is more watery and contains more proteins, sugar (lactose), vitamins, and minerals, primarily quenching the baby's thirst.
    • Hindmilk:
      • The milk obtained towards the end of a feed, after the foremilk.
      • Provides significantly more fat and thus more energy, crucial for the baby's growth and satiety. It's important for babies to get enough hindmilk.

    Techniques of Breastfeeding

    Proper technique ensures comfortable and effective breastfeeding for both mother and baby:

    1. Maternal Comfort: The mother should be comfortable and relaxed, both physically and mentally, before initiating a breastfeed.
    2. Correct Positioning: Ensure correct positioning of both the mother and the baby. The baby should be tummy-to-tummy with the mother, ear, shoulder, and hip in a straight line, and the head and body supported.
    3. Latching: Proper latching is crucial. The baby's chin should touch the breast, the cheek should touch the nipple, and the baby should open their mouth wide (rooting reflex). The nipple and most of the areola (the dark area around the nipple) should go into the baby's mouth, not just the nipple. This ensures effective milk transfer and prevents nipple soreness.
    4. Feeding Frequency: Breastfeeding can be offered at 1-2 hour intervals initially, and then on self-demand by the baby (feeding whenever the baby shows hunger cues).
    5. Duration of Feeding: The duration of a feed should be continued until the baby is satisfied and releases the breast on their own.
    6. Burping: Gently burp the baby after feeding to release swallowed air. However, if the baby has a good latch that prevents air entry, burping may not always be necessary.
    7. Post-Feeding Position: After feeding, the baby should be placed on their right side. Babies often fall asleep after feeding.
    8. Exclusive Breastfeeding Duration: Breastfeeding should be continued exclusively up to 6 months, as frequent suckling helps maintain an adequate milk supply for the baby.
    9. Complementary Feeding: At 6 months, complementary foods should be introduced, gradually and progressively, alongside continued breastfeeding up to 2 years or beyond. This is the process of transitioning the baby from solely breast milk to a varied family diet.
    10. Maternal Hygiene: The mother should maintain good hygienic measures, including daily bathing and washing breasts during baths, and wearing clean clothing to prevent contamination of breast milk.

    Assessment of Nutritional Status

    The nutritional status of an individual is a complex interplay of the adequacy of food intake (both in quality and quantity) and the individual's physical health. The purpose of nutritional assessment is to detect nutritional problems early and to develop a tailored plan to meet the child's specific nutritional needs. Common methods include:

    1. Dietary History:

      Involves collecting detailed information about the child's food intake, including types and quantities of cereals, pulses (legumes), vegetables, fruits, milk, meat, fish, eggs, oils, and sugar. This provides insight into dietary patterns and potential deficiencies or excesses.

    2. Clinical Examination:

      A thorough head-to-toe physical examination is performed to detect clinical signs of nutritional deficiency states. These can include hair changes (e.g., sparse, discolored hair in protein deficiency), anemia (pale conjunctiva), edema (swelling, often in severe protein deficiency), bleeding gums (Vitamin C deficiency), dental caries (poor oral hygiene/sugar intake), and enlarged thyroid gland (iodine deficiency).

    3. Anthropometry:

      A very valuable and widely used index for evaluating nutritional status. It involves taking precise body measurements, which are then compared to standardized growth charts. Key anthropometric measurements include:

      • Height/Length: For assessing linear growth and identifying stunting.
      • Weight: For assessing overall nutritional status and identifying underweight or overweight.
      • Skinfold Thickness: Measures subcutaneous fat, indicating body fat reserves.
      • Arm Circumference: Mid-upper arm circumference (MUAC) is a quick screening tool for acute malnutrition.
      • Head Circumference: Important for infants and toddlers as an indicator of brain growth.
      • Chest Circumference: Less commonly used alone but can be part of overall body proportion assessment.

    4. Biochemical Evaluation and Lab Tests:

      These involve the estimation of nutrient levels and their concentration in body fluids (e.g., blood tests for iron, vitamins). They can also assess enzyme levels or detect abnormal amounts of metabolites that indicate nutritional imbalances. While highly accurate, these tests are often time-consuming and expensive, usually performed in more complicated or ambiguous conditions.

    5. Functional Assessment:

      Emerging as an important aspect of diagnostic tools, functional assessments evaluate how nutritional status impacts the body's physiological functions. Examples include tests for nerve function (e.g., in thiamine deficiency) or assessing the working capacity of the heart (e.g., in severe malnutrition affecting cardiac muscle).

    6. Radiology:

      Radiological imaging can detect physical signs of nutritional deficiencies affecting skeletal health. Examples include:

      • Retardation of Bone Age: Indicates chronic malnutrition affecting skeletal maturation.
      • Osteoporosis: Can be seen in prolonged calcium or Vitamin D deficiency.
      • Classical Signs of Scurvy or Rickets: Specific bone changes indicative of severe Vitamin C or Vitamin D deficiency, respectively.

    Nutrition in Children Read More »

    Growth Monitoring and Promotion

    Growth Monitoring and Promotion

    Nursing Notes - Child Growth and Development

    Growth Monitoring and Promotion

    Growth Monitoring

    Growth monitoring involves regularly weighing a child, plotting the weight on a child health card (also known as a growth chart), interpreting the results, and counseling parents or caregivers. It's a proactive and preventative health measure to track a child's developmental progress over time and identify potential issues early.

    Monitoring includes a range of anthropometric measurements to provide a holistic view of the child's physical development. These parameters are compared against standardized growth charts, which show the typical growth patterns of healthy children.

    Parameters Used to Monitor Growth:
    • Height for age: Indicates linear growth and identifies stunting (chronic malnutrition) or tall stature. It reflects long-term nutritional status and overall health.
    • Weight for age: A general indicator of nutritional status and acute malnutrition (underweight). It reflects both current and past nutritional experience.
    • Head circumference: Especially important for infants and toddlers (usually up to 2-3 years of age), as it's a proxy for brain growth and development. Deviations can indicate neurological issues.
    • Body Mass Index (BMI) for age: Calculated from weight and height, BMI for age is used to screen for overweight, obesity, and wasting (acute malnutrition). It is a better indicator of body proportionality than weight-for-age alone.
    • Skinfold thickness: Measures subcutaneous fat, providing an estimate of body fat reserves. Commonly measured at the triceps and subscapular areas, it helps assess nutritional status, particularly for under- and over-nutrition.
    Importance of Growth Monitoring:
    • Early Recognition of Abnormal Growth: Children whose growth deviates significantly from the standard growth curve are easily recognized from the growth chart, allowing for timely intervention.
    • Identification of Chronic Disorders: Abnormal growth patterns can be early indicators of underlying chronic diseases, endocrine disorders, or genetic conditions, facilitating early diagnosis and treatment.
    • Attainment of Optimal Nutritional Status: Regular monitoring helps in assessing the effectiveness of nutritional interventions and guides dietary adjustments to improve overall nutrition.
    • Supports Research and Public Health: Longitudinal growth data contributes valuable information for public health research, identifying trends, and evaluating the impact of health programs on child populations.
    • Empowers Parents/Caregivers: It helps parents to gain nutritional knowledge, reduces anxiety by providing clear information about their child’s health, and offers reassurance when growth is on track. It fosters active parental involvement in their child's health.
    • Addresses Influential Psychosocial and Social Factors: Deviations in growth can signal underlying psychosocial issues. Growth monitoring helps identify if there are influential psychological or social factors (e.g., parental neglect or separation, orphans, family stress) that may affect the growth of the child, prompting social support or intervention.
    • Determines Natural Short Stature: It helps parents understand if their child's short stature is due to genetic predisposition (familial short stature) rather than a pathological cause, reducing unnecessary worry.
    • Prevents Illness, Malnutrition, and Death: Early identification of growth faltering allows for interventions that can prevent progression to severe malnutrition, reduce susceptibility to illness, and ultimately prevent mortality.
    • Evaluates Health or Nutritional Interventions: It serves as a crucial tool to evaluate the effectiveness of health interventions, such as exclusive breastfeeding campaigns, complementary feeding programs, or deworming initiatives, by observing their impact on growth patterns.
    • Determines if the Child is Failing to Thrive: A consistent pattern of poor weight gain or growth across multiple parameters can indicate "failure to thrive," a clinical term for inadequate growth, necessitating comprehensive medical and social assessment.

    Growth Promotion

    To effectively combat growth problems and ensure optimal child development, a comprehensive approach to growth promotion is essential. This involves a continuum of care starting from the antenatal period and continuing through various stages of childhood, integrating health, nutrition, and social support.

    Antenatal Care (During Pregnancy):
    • Prevent, Detect, and Treat Pregnancy-Related Complications: Regular check-ups help manage conditions like pre-eclampsia, gestational diabetes, and infections, ensuring a healthy environment for fetal growth.
    • Provide Advice on Breastfeeding: Educate expectant mothers on the benefits of exclusive breastfeeding, proper latch, and positioning, preparing them for successful initiation post-delivery.
    • Provide Health Education on Dangers of Smoking, Alcohol Consumption, and Drug Abuse: Emphasize the severe adverse effects of these substances on fetal development, promoting a healthy pregnancy.
    • Health Education on Good Baby Care: Prepare parents for newborn care, including hygiene, safe sleep practices, and early developmental stimulation.
    • Identify Parents Who May Need Extra Support: Screen for and provide targeted support to parents with learning disorders, mental health problems, or other vulnerabilities that might impact their ability to care for the child.
    • Health Education on Good Nutrition: Advise on balanced dietary intake for pregnant women, including essential micronutrients, to prevent maternal and fetal malnutrition.
    • Provide Preventive Treatment: Administer Intermittent Presumptive Treatment (IPT) for malaria in endemic areas, iron and folic acid supplements to prevent anemia, and deworming tablets where necessary.
    • Monitor the Progress of Pregnancy: Regular assessments of fetal growth, maternal weight gain, and general health to identify any deviations.
    • Health Education on Hygiene: Promote handwashing, safe water practices, and personal hygiene to prevent infections for both mother and baby.
    • Encourage Hospital Delivery: Advocate for delivery in health facilities with skilled birth attendants to manage delivery complications and ensure immediate postnatal care for mother and baby.
    Less than 6 Weeks (Newborn Period):
    • Physical/Medical Examination of the Child: Comprehensive newborn check-up to detect congenital anomalies, birth injuries, and establish baseline health.
    • Immunization: Administer initial vaccinations like Polio 0 (at birth) and BCG (Bacillus Calmette–Guérin) for tuberculosis prevention.
    • Exclusive Breastfeeding: Promote and support exclusive breastfeeding from birth up to six months of age, providing all necessary nutrients and antibodies.
    • Hygiene - Cord Care: Educate on proper umbilical cord care to prevent infection.
    • Growth Monitoring/Weighing: Initial weighing and assessment to establish birth weight and track early weight gain.
    • Early Detection of Disease: Vigilance for signs of common newborn illnesses like fever, diarrhea, or respiratory distress, and prompt treatment.
    At 6 Weeks:
    • Physical Examination: Comprehensive check-up to assess overall health and development.
    • Immunization: Administer 6-week vaccinations, typically including Polio 1, DPT 1 (Diphtheria, Pertussis, Tetanus), Hib 1 (Haemophilus influenzae type b), and Hepatitis B 1.
    • Care Safety: Educate parents on infant safety measures, including safe sleep, preventing falls, and childproofing.
    • Growth Monitoring: Regular weighing and plotting on the growth chart.
    • Proper Nutrition: Reinforce exclusive breastfeeding and address any feeding difficulties.
    • Hygiene: Continue education on general infant hygiene.
    • Early Detection of Disease: Continued emphasis on recognizing and seeking care for signs of illness.
    At 2, 3, 4 Months of Age (Scheduled Immunization Visits):
    • Immunization: Follow the national immunization schedule:
      • At 10 weeks: Polio 2, DPT 2, Hib 2, Hep B 2.
      • At 14 weeks: Polio 3, DPT 3, Hib 3, Hep B 3.
    • Check Weight: Consistent growth monitoring at each visit to track progress and identify any faltering.
    • Developmental Screening: Brief checks for age-appropriate developmental milestones.
    8 Months, 2 Years, 3 Years (Key Developmental Milestones and Check-ups):
    • Immunization: Administer the Measles vaccine at 9 months. Ensure all other immunizations are up-to-date.
    • Respond to Mothers' Concerns: Actively listen to and address parental concerns about their children’s development, behavior, or health.
    • Prevent, Detect, and Treat Illnesses: Ongoing vigilance for common childhood illnesses, prompt diagnosis, and appropriate treatment.
    • Monitor Growth: Continue regular growth monitoring, including height and weight, to track long-term trends.
    • Hygiene: Reinforce practices of good hygiene, especially as children become more mobile and exposed to different environments.
    • Good Nutrition: Provide guidance on appropriate complementary feeding (after 6 months), portion sizes, diverse food groups, and healthy eating habits as the child grows.
    • Developmental Guidance: Provide anticipatory guidance on age-appropriate stimulation, language development, and social-emotional growth.
    At 4-5 Years (Preschool Check-up/School Entry Readiness):
    • Review at School Entry: A comprehensive review around school entry provides a crucial opportunity to ensure overall child readiness.
    • Immunization Status: Check that all immunizations are up-to-date according to the national schedule, including booster doses if required, to ensure protection before entering a group setting.
    • Access to Healthcare: Ensure children have continued access to routine immunization and dental care, which are vital for overall health.
    • Assessment and Intervention for Problems: Provide appropriate assessment and intervention for any physical, social, emotional, or developmental problems identified before school entry, ensuring children are well-prepared for learning.
    • Information for Parents and School Staff: Provide children, parents, and school staff with information about specific health issues relevant to the school environment, such as allergies, chronic conditions, or healthy lifestyle choices.
    • Check Weight and Height: Continue anthropometric measurements to monitor growth trends as the child approaches school age.
    School Entry - 5 Years (School Nurse Assessment):
    • School Nurse Checks:
      • Weight and Height: Routine anthropometric measurements are taken to continue growth monitoring within the school setting.
      • Reviews Immunization Status: The school nurse verifies that the child's immunization record is complete and up-to-date, important for preventing outbreaks in schools.
      • Vision and Hearing Screening: Often conducted at school entry to detect any impairments that could affect learning.
      • Basic Health Assessment: A general check of the child's health to identify any immediate concerns or conditions that might require ongoing support or accommodation in school.

    Child Health Card

    The Child Health Card is a vital clinical tool designed for the comprehensive monitoring of children's health from birth up to 5 years of age. While specifically mentioned as a tool used by the Ministry of Health (MoH) Uganda, similar child health records or growth charts are employed globally to track growth, immunizations, and overall well-being. It serves as a continuous record of a child's health journey, facilitating informed decision-making by healthcare providers and empowering parents in their child's care.

    Components of the Child Health Card

    A well-designed Child Health Card typically includes several key sections to capture essential information:

    • Family Information: This section captures crucial demographic data, including the child's name, birth weight, sex, date of birth, and birth order. It also records parents' details (names, occupations) and the family's address. This information helps in identifying the child and understanding their socio-economic context.
    • Immunization Schedule: A pre-printed or designated section that lists the recommended immunizations according to the national schedule, along with spaces to record the dates of administration and the next due dates. This ensures children receive timely vaccinations to protect against preventable diseases.
    • Growth Chart: A graphical representation used to track key growth parameters, most notably weight for age. It typically includes percentile curves or Z-score lines that allow healthcare providers to plot a child's measurements and compare them against a reference population, identifying patterns of healthy growth, faltering growth, or overweight.
    • Interpretation Section: Provides clear guidelines and instructions for healthcare workers on how to interpret the plotted growth trends. This helps in understanding the significance of a child's growth pattern (e.g., if a child is growing well, showing signs of malnutrition, or at risk of overweight).
    • Vitamin A Supplementation: A record-keeping area for documenting the dates and dosages of Vitamin A administered to both the child and, sometimes, the mother (postpartum). Vitamin A is crucial for immune function, vision, and growth.
    • Special Care Categories: This section allows healthcare providers to flag or indicate children who require specific attention or follow-up due to particular circumstances or risk factors.
    • Remarks and Referrals: A free-text area where healthcare providers can note additional comments, observations, or significant events in the child's health history. It also serves as a log for referrals to other health services or specialists.

    Child demographics specifically include: Child’s name, birth weight, sex, date of birth, birth order, mother’s occupation, father’s name and occupation, and where the child lives.

    Counseling the Mother After Weighing the Child

    Effective counseling is a critical component of growth monitoring, empowering mothers with knowledge and practical advice tailored to their child's growth status. The approach differs based on whether the child has gained adequate weight or not.

    For Children 0-6 Months (Gained Adequate Weight):

    When a baby in this age group shows healthy weight gain, the counseling focuses on reinforcement and positive affirmation, while also subtly assessing for any underlying issues or misconceptions.

    • Acknowledge and Congratulate: Show the mother the growth curve on the card and congratulate her for the child’s healthy weight gain. This positive reinforcement encourages continued good practices.
    • Assess Breastfeeding Knowledge: Gently inquire about what the mother knows or believes about exclusive breastfeeding (feeding only breast milk, no other foods or liquids). This helps identify any gaps in understanding.
    • Check for Maternal Well-being: Ask if the mother is experiencing any sickness or problems (physical or emotional), as maternal health directly impacts breastfeeding and infant care.
    • Reinforce Positive Practices: Find out how the mother is currently feeding her child and reinforce correct and effective breastfeeding practices.
    For Children 0-6 Months (Did Not Gain Adequate Weight):

    If the baby has not gained weight as expected, the counseling approach shifts to a more investigative and supportive dialogue to identify potential causes and provide targeted solutions.

    • Create Rapport: Begin by establishing a trusting and supportive environment. This is crucial for open communication, as mothers may feel sensitive or blamed.
    • Explain the Growth Curve: Show the mother the child's growth curve and explain, in a non-judgmental way, that the baby did not gain weight as expected. Focus on the factual observation.
    • Inquire About Child's Health: Ask if the baby is sick or has been experiencing any health problems (e.g., fever, diarrhea, cough), which could affect appetite or absorption.
    • Assess Feeding Practices (Non-Breastmilk): Find out if the baby is being fed on other foods, liquids, or formula in addition to breast milk. This helps identify practices that might displace breast milk intake.
    • Assess Maternal Nutrition: Inquire if the mother’s nutrition is appropriate and adequate, as maternal diet can affect breast milk supply and quality (though quantity is primarily supply-demand driven).
    • Check for Sucking Problems: Ask if the baby appears to have problems with sucking (e.g., weak suck, difficulty latching), which could indicate oral issues or neurological concerns.
    • Assess Latch and Positioning: Find out if the mother has problems with attaching the baby to the breast during breastfeeding, as poor latch is a common cause of insufficient milk transfer.
    Key Questions to Ask (for 0-6 months, inadequate weight gain):
    • Frequency of Feeding: "How many times a day and night does the baby breastfeed?" (A baby should typically feed 8-12 times in 24 hours).
    • Duration of Feeding: "Does the baby breastfeed long enough to empty the breast?" (Full emptying ensures the baby gets the richer, hindmilk).
    • Introduction of Other Foods/Liquids: "Is the child fed on other liquids or foods besides breast milk?"
    • Maternal Separation: "Does the mother stay away from the baby any time during the day?" (Separation can affect feeding frequency and milk supply).
    Information to Provide to the Mother (for 0-6 months, inadequate weight gain):
    • Frequent Feeding: Encourage the mother to breastfeed frequently, at least 8-10 times per day (or on demand, whenever the baby shows signs of hunger).
    • Complete Breast Emptying: Emphasize encouraging the mother to allow the baby to feed long enough to empty one breast before moving to the other.
    • Correct Latch and Position: Help the mother to know and practice the correct position and attachment of the baby to the breast. This is critical for effective milk transfer.
    • Exclusive Breastfeeding: Reiterate and encourage exclusive breastfeeding unless there are compelling medical reasons for supplementation.
    • Immunization Status: Check the child’s immunization status and ensure all due vaccines are administered.
    • Vitamin A: Check and administer Vitamin A if due and appropriate for age.
    For Children 6-12 Months (Gained Adequate Weight):

    Counseling continues to build upon previous advice, now incorporating the introduction of complementary foods.

    • Repeat Counseling Steps: Follow similar counseling steps as for 0-6 months with adequate weight gain, reinforcing positive practices.
    • Inquire About Complementary Foods: Specifically ask about the additional foods being given besides breast milk (e.g., types, frequency, consistency, quantity) to ensure appropriate and adequate complementary feeding.
    For Children 6-12 Months (Did Not Gain Adequate Weight):

    For this age group, inadequate weight gain often points to issues with complementary feeding or ongoing illness.

    • Explain Growth Status: Show the mother the card and explain, gently, that the baby did not

    Growth Monitoring and Promotion Read More »

    TUMORS (NEOPLASMS)

    TUMORS (NEOPLASMS)

    Nursing Notes - Tumors

    TUMORS (NEOPLASMS)

    A Neoplasm is an abnormal mass of tissue whose growth exceeds and is uncoordinated with that of the normal tissues, and which persists in the same excessive manner after the cessation of the stimuli that evoked the change. These new abnormal growths are also commonly referred to as Tumors.

    Etiology of Tumors

    The exact cause of tumor development (oncogenesis) is often multifactorial and idiopathic. However, several factors are known to increase the risk of abnormal tissue growth:

  • Genetics: Predisposition due to inherited gene alterations. For example, mutations in the BRCA1 and BRCA2 genes are linked to an increased risk of breast and ovarian cancer.
  • Hereditary Factors: Certain families have a higher incidence of specific cancers, suggesting predisposing genetic factors.
  • Carcinogens: These are agents that can cause cancer by damaging cellular DNA.
    • Chemical Carcinogens: Tobacco smoke, asbestos, alcohol, aflatoxin (from fungus), and industrial chemicals like benzene.
    • Physical/Radiation Carcinogens: Exposure to ultraviolet (UV) rays from the sun, and ionizing radiation from X-rays and radioactive materials.
  • Viral and Microbial Infections: Certain viruses can integrate their genetic material into host cells, leading to malignant transformation. Examples include Human Papillomavirus (HPV) predisposing to cervical cancer, Hepatitis B and C viruses to liver cancer, and Epstein-Barr virus (EBV) to certain lymphomas.
  • Immunosuppression: A weakened immune system is less effective at detecting and destroying abnormal cells. This is seen in individuals with HIV/AIDS (predisposing to Kaposi's sarcoma) or those on immunosuppressive drugs after organ transplants.
  • Hormonal Disturbances: Imbalances in certain hormones, especially growth-related hormones or sex hormones (e.g., estrogen), can promote the growth of hormone-sensitive tumors.
  • Lifestyle Factors:
    • Substance Use: Excessive alcohol consumption and cigarette smoking are major risk factors for many cancers.
    • Diet: A diet high in processed meats and low in fruits and vegetables is linked to an increased risk of certain cancers, like colorectal cancer.
    • Obesity and Physical Inactivity: These contribute to a pro-inflammatory state and hormonal imbalances that can drive tumor growth.
  • Chronic Irritation and Inflammation: Prolonged inflammation can lead to increased cell turnover and a higher chance of DNA mutations (e.g., chronic acid reflux leading to esophageal cancer). Local trauma or injury is less commonly a direct cause but can be associated with inflammation.
  • Demographic Factors:
    • Age: The incidence of cancer increases significantly with age, as cellular repair mechanisms become less efficient over time.
    • Race and Geographical Distribution: Certain tumors are more common in specific racial groups or geographical locations, likely due to a combination of genetic, environmental, and lifestyle factors.
  • Classification of Tumors

    Tumors are broadly classified based on their clinical behavior, cellular origin, and potential to spread.

    Benign Tumors

    These are non-cancerous growths. They tend to grow slowly and are often enclosed in a fibrous capsule, which keeps them from spreading to surrounding tissues. While they do not metastasize (spread to distant sites), they can cause problems by exerting pressure on vital organs, nerves, or blood vessels. Histologically, the cells of a benign tumor are well-differentiated, meaning they closely resemble the normal cells of the tissue from which they originated. They generally do not return after surgical removal. However, some benign tumors have the potential to become malignant if left untreated.

    Malignant Tumors

    These are cancerous tumors. They are characterized by rapid, uncontrolled growth and the ability to invade and destroy surrounding tissues. Malignant cells are anaplastic, meaning they are poorly differentiated and do not resemble normal cells in shape, size, or function. A key feature is their ability to metastasize, where cells break away from the primary tumor and travel through the blood or lymphatic system to form secondary tumors (metastases) in other parts of the body. Malignant tumors have a high tendency to recur after removal.

    Premalignant (or Precancerous) Conditions

    This refers to conditions involving abnormal cells that are not yet cancerous but have an increased risk of developing into a malignant tumor over time. These conditions require close monitoring and sometimes treatment.

    Types of Benign Tumors

    Benign tumors are typically named by adding the suffix “-oma” to the name of the tissue of origin.

    Adenomas

    Benign tumors arising from the epithelial tissue of a gland or gland-like structure. Common examples include colon polyps and adenomas of the thyroid, pituitary, or liver. They can sometimes become cancerous and may require surgical removal.

    Fibromas (or Fibroids)

    Tumors of fibrous or connective tissue that can grow in any organ. They are very common in the uterus (leiomyomas, often called fibroids) and can cause symptoms like heavy bleeding or pelvic pain, necessitating removal.

    Hemangiomas

    A benign tumor formed by a collection of excess blood vessels. They often appear on the skin as "strawberry marks," especially in newborns, and most fade over time without treatment.

    Lipomas

    The most common benign tumor in adults, arising from fat cells (adipose tissue). They are slow-growing, soft, movable lumps often found on the neck, shoulders, or back. Treatment is usually only necessary if they become painful or grow rapidly.

    Meningiomas

    Tumors that develop from the meninges, the membranes surrounding the brain and spinal cord. Most are benign and slow-growing. Symptoms (headaches, seizures, weakness) depend on their location and may require treatment.

    Myomas

    Tumors that grow from muscle tissue. Leiomyomas grow from smooth muscle (e.g., in the uterus, stomach). Rhabdomyomas are rare benign tumors of skeletal muscle.

    Neuromas

    Benign tumors that grow from nerves. Neurofibromas and schwannomas are other examples, which can occur anywhere in the body.

    Osteomas

    Benign tumors of bone. The most common type is an osteochondroma, which usually appears as a painless bump near a joint, like the knee or shoulder.

    Papillomas

    Growths that project in finger-like fronds from epithelial tissue. They can appear on the skin, cervix, or in breast ducts. Some are caused by HPV and may require removal to rule out cancer.

    Nevi (Moles)

    Very common noncancerous growths on the skin.

    Types of Premalignant Conditions

    Actinic Keratosis

    Also known as solar keratosis, these are crusty, scaly patches of skin caused by sun exposure, especially in fair-skinned individuals. A percentage of these can progress to squamous cell carcinoma.

    Cervical Dysplasia

    Abnormal cell changes on the surface of the cervix, usually detected by a Pap smear. It is considered premalignant and is at risk of developing into cervical cancer if not treated.

    Metaplasia of the Lung

    A change in the cells lining the bronchi (airways), often caused by smoking, where glandular cells are replaced by squamous cells. This can be a precursor to cancer.

    Leukoplakia

    Thick, white patches that form on the gums, inside the cheeks, or on the tongue, which cannot be scraped off. It is strongly linked to tobacco use and a small percentage can become cancerous.

    Types of Malignant Tumors

    Malignant tumors are named based on their tissue of origin.

    Carcinoma

    The most common type of cancer, forming from epithelial cells that line the surfaces of the body. Examples include adenocarcinoma (from glandular cells), squamous cell carcinoma, and basal cell carcinoma. They can occur in the lung, breast, prostate, colon, and skin.

    Sarcoma

    Cancers that arise from connective and supportive tissues such as bone, cartilage, fat, muscle, and nerves. Examples include osteosarcoma (bone) and liposarcoma (fat).

    Blastoma

    Tumors derived from embryonic (precursor) cells. They are more common in children. Examples include neuroblastoma (nerve cells), retinoblastoma (eye), and medulloblastoma (brain).

    Germ Cell Tumors

    These arise from reproductive cells (sperm or eggs) and most often occur in the testicles or ovaries. Teratomas are a common type.

    Leukemia and Lymphoma

    These are cancers of the blood-forming cells and immune system. Leukemia is a cancer of the bone marrow that leads to an overproduction of abnormal white blood cells. Lymphomas (e.g., Hodgkin's and non-Hodgkin's) are cancers of the lymphatic system. Note: All lymphomas are malignant.

    Clinical Features, Diagnosis, and Staging

    Modes of Spread (Metastasis)

    Malignant tumors spread via several pathways:

    • Local Extension: Direct invasion into adjacent tissues.
    • Lymphatic Spread: Tumor cells enter lymphatic vessels and travel to regional lymph nodes.
    • Hematogenous (Blood) Spread: Tumor cells penetrate blood vessels and are carried to distant organs like the liver, lungs, and brain.
    • Transcoelomic Spread: Malignant cells spread across body cavities like the peritoneum or pleura.
    • Tumor Seedlings: Accidental transplantation of tumor cells to new sites, for instance, during a surgical procedure.

    Diagnosis and Investigations

    Diagnosis involves a combination of history, physical examination, and investigations.

    • Biopsy: The definitive diagnosis of cancer is made by examining a tissue sample under a microscope.
      • Excisional Biopsy: Removal of the entire tumor or suspicious area.
      • Incisional or Core Biopsy: Removal of a sample directly from the tumor.
      • Needle Aspiration Biopsy: Removal of fluid or a small tissue sample with a needle.
    • Imaging Studies: To determine the tumor's location, size, and extent of spread. These include CT scans, MRI scans, X-rays, Ultrasounds, and Mammograms.
    • Endoscopy: To visualize internal organs and obtain biopsies (e.g., colonoscopy for colon polyps, endoscopy for stomach tumors).
    • Blood Tests: Can include complete blood counts and checks for tumor markers (substances produced by cancer cells).
    • Cytological Examinations: Such as a Pap smear to examine cells from the cervix for abnormalities.

    Tumor Staging and Grading

    Once cancer is diagnosed, it is staged and graded to plan treatment and predict prognosis.

    • Grading: Describes how abnormal the cancer cells look under a microscope (degree of differentiation). A lower grade (e.g., Grade 1) means the cells are well-differentiated and look more like normal cells, suggesting a slower-growing cancer. A higher grade (e.g., Grade 3 or 4) means the cells are poorly differentiated or anaplastic, suggesting a more aggressive cancer.
    • Staging: Describes the size of the tumor and how far it has spread from its original location. The most common system is the TNM system:
      • T (Tumor): Describes the size and extent of the primary tumor.
      • N (Nodes): Indicates whether the cancer has spread to nearby lymph nodes.
      • M (Metastasis): Indicates whether the cancer has metastasized to distant parts of the body.

    Management of Malignant Tumors

    Treatment can be curative (aiming to cure the disease) or palliative (aiming to relieve symptoms and improve quality of life when a cure is not possible).

    Curative Treatment

    Often involves a combination of modalities:

    • Surgery: The physical removal of the tumor, often with a margin of surrounding healthy tissue. It is a primary treatment for many solid tumors.
    • Radiotherapy: Uses high-energy radiation to kill cancer cells and shrink tumors. It can be used alone or in combination with other treatments.
    • Cytotoxic Chemotherapy: The use of drugs to kill rapidly dividing cancer cells. It is particularly effective for metastatic disease or blood cancers.

    Palliative Management

    Focuses on symptom control and maintaining quality of life.

    • Surgery: Can be used to relieve symptoms, such as debulking a tumor that is causing an obstruction or pain, even if it cannot be completely removed.
    • Radiotherapy: Effective for shrinking tumors to relieve pain, especially from bone metastases.
    • Hormone Therapy: Blocks or lowers the amount of hormones that some cancers (like breast and prostate) need to grow.
    • Targeted Therapy and Immunotherapy: Newer treatments that target specific molecular characteristics of cancer cells or boost the body's own immune system to fight cancer.
    • Cytotoxic Chemotherapy: Can be used in lower doses to control tumor growth and manage symptoms. Drugs used include:
      • Alkylating agents (e.g., cyclophosphamide)
      • Antimetabolites (e.g., methotrexate, fluorouracil)
      • Plant alkaloids (e.g., vincristine)
      • Cytotoxic antibiotics (e.g., doxorubicin)
      • Platinum compounds (e.g., cisplatin)
      • Monoclonal antibodies (e.g., trastuzumab)
    • Symptom Control:
      • Pain Relief: Use of analgesics (from non-opioids to strong opiates), as well as nerve blocks with phenol or alcohol.
      • Supportive Drugs: Anti-emetics for nausea, tranquilizers, and hypnotics.
      • Maintenance of Morale: Providing psychological, emotional, and spiritual support is a crucial part of holistic care.

    Prevention of Tumors and Cancers

    Many cancers can be prevented through healthy lifestyle choices and regular screening.

    • Early Screening and Detection: Regular check-ups, self-examinations (e.g., self-breast exam), and recommended screenings (e.g., Pap smears, colonoscopies, mammograms).
    • Reduce Carcinogen Exposure: Minimize exposure to radiation, toxic chemicals, and excessive sun (use sunscreen).
    • Healthy Lifestyle:
      • Maintain a healthy weight and exercise regularly.
      • Eat a balanced diet rich in fruits, vegetables, and fiber.
      • Limit alcohol consumption.
      • Avoid smoking and chewing tobacco.

    Table 1: Difference between Benign and Malignant Tumors

    Characteristic Benign Tumors Malignant Tumors
    Cancerous No, they are non-cancerous. Yes, they are cancerous.
    Rate of Growth Slow Rapid
    Capsule Typically encapsulated (enclosed in a capsule). Not encapsulated; invasive.
    Invasion Does not invade surrounding tissues; grows by expansion. Invades and destroys surrounding tissues.
    Metastasis Does not metastasize. Frequently metastasizes to distant sites.
    Cell Differentiation Well-differentiated; cells resemble normal tissue. Poorly differentiated (anaplastic); abnormal cell structure.
    Recurrence Rarely recurs after surgical removal. Frequently recurs after removal.
    Systemic Effects Usually localized effects (e.g., pressure on organs). Can cause systemic effects like weight loss, fatigue (cachexia).

    TUMORS (NEOPLASMS) Read More »

    FLUID AND ELECTROLYTE IMBALANCE

    FLUID AND ELECTROLYTE IMBALANCE

    Nursing Notes - Burns

    FLUID AND ELECTROLYTE IMBALANCE

    Fluid and electrolyte balance is a dynamic process that is crucial for life and homeostasis.

    Electrolytes

    Electrolytes in body fluids are active chemicals (cations that carry positive charges and anions that carry negative charges). The major cations in the body fluid are sodium, potassium, calcium, and hydrogen ions. The major anions are chloride, bicarbonate, phosphate, sulphate, and proteinate ions. The chemicals unite in varying combinations. Therefore, electrolyte concentration in the body is expressed in terms of milliequivalents (mEq) per litre. A milliequivalent is defined as being equivalent to the electrochemical activity of 1mg of hydrogen.

    Approximately 60% of a typical adult’s weight consists of fluids (water and electrolytes). Factors that influence the amount of body fluid are age, gender, and body fat. In general, younger people have a higher percentage of body fluid than older people, and men have proportionately more body fluid than women. People who are obese have less fluid than those who are thin because fat cells contain little water.

    FLUID VOLUME DISTURBANCES OR ELECTROLYTE IMBALANCE OR DISORDERS

    An electrolyte disorder occurs when the levels of electrolytes in the body are either too high or too low. Electrolytes are naturally occurring elements and compounds in the body. They control important physiologic functions.

    SODIUM IMBALANCES

    Sodium is the most abundant electrolyte in the ECF. Its concentration ranges from 135-145 mEq per litre. Sodium has a major role in controlling water distribution throughout the body because it does not easily cross the cell membrane and because of its abundance and high concentration in the body. Sodium also functions in establishing the electrochemical state necessary for muscle contraction and transmission of nerve impulses.

    SODIUM DEFICIT (HYPONATREMIA)

    Hyponatremia refers to a serum sodium level that is less than 135 mEq/L (135mmol/L). Sodium imbalance often occurs with a fluid imbalance because the same hormones regulate both sodium and water balance.

    CLINICAL MANIFESTATIONS
    • Poor skin turgor
    • Dry mucosa
    • Headache
    • Decreased saliva production
    • Orthostatic fall in blood pressure
    • Nausea and vomiting
    • Abdominal cramping
    • Neurological changes which include: Altered mental status, Status epilepticus, and coma
    • Anorexia
    • Feeling of exhaustion
    SIGNS OF INTRACRANIAL PRESSURE
    • Lethargy
    • Confusion
    • Muscle twitching
    • Hemiparesis
    • Focal weakness
    • Papilledema
    • Seizures and death may occur.
    CAUSES
    • Excessive diaphoresis
    • Diuretics (high ceiling diuretics)
    • Wound drainage (especially gastrointestinal)
    • Decreased secretion of aldosterone
    • Hyperlipidemia
    • Kidney diseases (scarred distal convoluted tubule)
    • Nothing by mouth
    • Low salt diet
    • Cerebral salt wasting syndrome
    • Hyperglycemia
    • RELATIVE SODIUM DEFICITS (DILUTIONAL): Excessive ingestion of hypotonic fluids, fresh water submersion, Kidney failure (nephrotic syndrome), Irrigation with hypotonic fluids, Heart failure.
    MANAGEMENT
    • When possible, the underlying cause is treated.
    • Intravenous infusion of normal saline is used for slow and gradual correction.
    • Monitoring therapy can help restore sodium balance in mild Hyponatremia. This includes increasing oral sodium intake and restricting oral fluid intake.
    • The nurse’s responsibility for this patient includes skin protection, safety, monitoring, patient and family teaching, and administering prescribed drugs.
    HYPERNATREMIA

    Hypernatremia is excess sodium in the blood, in which the serum level is over 145 mEq/L.

    CAUSES

    ACTUAL SODIUM EXCESSES:

    • Hyperaldosteronism
    • Kidney failure, Heart failure, Liver failure
    • Corticosteroids
    • Cushing’s syndrome or disease
    • Excessive oral sodium ingestion (salt intake)
    • Excessive administration of sodium-containing IV fluids.

    RELATIVE SODIUM EXCESSES:

    • Nothing by mouth, severe burns
    • Increased rate of metabolism
    • High fever
    • Hyperventilation
    • Infection
    • Excessive diaphoresis
    • Watery diarrhea
    • Dehydration.
    CLINICAL FEATURES
    • Pitting edema
    • Puffiness of the face
    • Increased urination
    • Often dilated jugular veins
    • Features of pulmonary oedema
    • Body temperature may increase mildly
    • A primary characteristic of Hypernatremia is thirst.
    • Dry, sticky mucous membranes
    • A rough, dry tongue and lethargy which can progress to coma.
    MANAGEMENT

    Treatment depends on the cause.

    • Infusion of a hypotonic electrolyte solution (e.g., 0.3% sodium chloride) or an isotonic non-saline solution (e.g., dextrose 5% in water).
    • Diuretics also may be prescribed to treat the sodium gain.
    • Nutrition therapy to prevent or correct mild Hypernatremia involves ensuring adequate water intake, especially among older adults.
    • Dietary sodium is restricted when kidney problems are present.
    • Collaboration with a dietitian to teach the patient how to determine the sodium content of food, beverages, and drugs is important.
    • Nursing actions for patient safety include skin protection, monitoring, and patient and family teaching about sodium excess.

    POTASSIUM IMBALANCES

    Potassium is the major cation of the intracellular fluid. It is particularly important for regulating heart function and helps in maintaining healthy nerves and muscles. Almost all foods contain potassium; it is high in meat and fish but less so in eggs, bread, and cereal grains. A deficit of potassium in the blood is called hypokalemia.

    HYPOKALEMIA

    Hypokalemia is an electrolyte imbalance in which the serum potassium level is below 3.5 mEq/L. It can be life-threatening because every body system is affected.

    CAUSES
    • Actual potassium deficits: Inappropriate or excessive use of drugs (e.g., Diuretics, Digitalis, Corticosteroids); Increased secretion of aldosterone; Cushing's syndrome; Diarrhea; Vomiting; Wound drainage (especially gastrointestinal); Prolonged nasogastric suction; Heat-induced excessive diaphoresis; Kidney failure.
    • Relative potassium deficits: Alkalosis; Hyperalimentation; Hyperinsulinism; Total parenteral nutrition; Water intoxication; IV therapy with potassium-poor solutions.
    CLINICAL FEATURES
    • Fatigue, Anorexia, Nausea, and vomiting
    • Muscle weakness
    • Polyuria, Decreased bowel motility
    • Ventricular asystole or fibrillations
    • Paresthesias, Leg cramps
    • Decreased blood pressure
    • Abdominal distention, Hypoactive reflexes
    MANAGEMENT
    • Conventional measures such as increased intake in the daily diet or oral potassium supplements are good for mild to moderate hypokalemia.
    • IV replacement therapy for potassium loss is typically 40-80 mEq/day. Examples include potassium chloride, potassium gluconate, and potassium citrate.
    • IV K+ is given for severe loss, and the amount depends on the degree of loss.
    • Oral potassium preparations can be taken as liquids or solids.
    • Diuretics that increase the kidney's excretion of potassium (e.g., furosemide/Lasix) can cause hypokalemia and should be monitored.
    • Nutrition therapy involves collaboration with a dietitian to teach the patient how to increase dietary potassium intake.
    • Respiratory monitoring is performed at least hourly for severe hypokalemia; monitor pulse, cough reflex, among others.
    HYPERKALEMIA

    Hyperkalemia is an electrolyte imbalance in which the serum potassium level is higher than 5.0 mEq/L. A level above 5.5 mEq/L is considered more severe.

    COMMON CAUSES
    • Over-ingestion of potassium-containing foods or medications (e.g., Salt substitutes, Potassium chloride)
    • Crush injury, Burns
    • Rapid infusion of potassium-containing IV solution, Bolus IV potassium injections
    • Transfusions of whole blood or packed cells
    • Adrenal insufficiency, Kidney failure, Addison’s disease
    • Potassium-sparing diuretics, Angiotensin-converting enzyme inhibitors (ACEIs)
    RELATED POTASSIUM EXCESSES
    • Tissue damage, Acidosis, Hyperuricemia, Uncontrolled diabetes mellitus
    CLINICAL MANIFESTATIONS
    • Muscle weakness, twitching, palpitations
    • Bradycardia, Hypotension
    • Tingling and burning sensations followed by numbness in the hands and feet
    • Increased motility with diarrhea and hyperactive bowel sounds; bowel movements are frequent and watery
    • Flaccid paralysis, Paresthesias, Intestinal colic, Cramps, Abdominal distension
    • Irritability, Anxiety
    MANAGEMENT
    • In non-acute situations, restricting dietary potassium and potassium-containing medications may correct the imbalance.
    • Administration of cation-exchange resins (e.g., sodium polystyrene sulfonate) orally or as retention enemas.
    • If serum potassium levels are dangerously elevated, it may be necessary to administer IV calcium gluconate with caution.
    • Monitor blood pressure to detect hypotension.
    • IV administration of regular insulin and a hypertonic dextrose solution causes a temporary shift of potassium into cells.
    • Loop diuretics such as furosemide (Lasix) increase the excretion of potassium.
    • Beta-2 agonists such as Albuterol (Ventolin) can be effective in decreasing potassium.
    • The nurse must caution the patient about using salt substitutes sparingly if they are taking other supplementary forms of potassium.
    • Observe the patient's general condition, vital signs, and GI symptoms.
    • Prevention includes avoiding potassium-rich foods if prescribed and checking labels of beverages for high potassium content.

    CALCIUM IMBALANCES

    More than 99% of the body’s calcium (Ca++) is located in the skeletal system, where it is a major component of bones and teeth. It is a divalent cation that exists in both a bound form (attached to serum proteins like albumin) and an ionized (free) form. The body functions best when calcium levels are maintained between 9.0 and 10.5 mg/dL. Calcium enters the body via dietary intake, and its absorption requires active vitamin D. It is a vital mineral used to stabilize blood pressure, control skeletal muscle contraction, and build strong bones and teeth.

    HYPOCALCEMIA

    Hypocalcemia is an electrolyte imbalance in which the total serum calcium (Ca2+) level is below 9.0 mg/dL or 2.25 mmol/L.

    COMMON CAUSES OF HYPOCALCEMIA
    • Actual calcium deficits: Inadequate oral intake of calcium, Lactose intolerance, Malabsorption (e.g., Celiac, Crohn's), Inadequate intake of vitamin D, End-stage kidney disease, Steatorrhea, Wound drainage, Hypoparathyroidism, Pancreatitis, Massive subcutaneous infections, Massive transfusions of citrated blood, Chronic diarrhea, Burns, Alcoholism.
    • Relative calcium deficits: Hypoproteinemia, Alkalosis, Immobility, Removal of the parathyroid gland.
    CLINICAL MANIFESTATIONS
    • Numbness and tingling of fingers
    • Positive Trousseau's sign and Chvostek's sign
    • Seizures, Bronchospasms
    • Anxiety, Impaired clotting time
    • Diarrhea, Anorexia, Nausea, and vomiting
    • Abdominal distention and pain are common
    MANAGEMENT
    • Acute symptomatic hypocalcemia is life-threatening and requires prompt treatment with IV administration of calcium salts (e.g., calcium gluconate, calcium chloride).
    • Vitamin D therapy may be instituted to increase calcium absorption from the GI tract.
    • Calcium-containing foods include milk products, green leafy vegetables.
    • Aluminum hydroxide or calcium acetate may be prescribed to decrease elevated phosphorus levels before treating hypocalcemia.
    • Educate the patient about foods rich in calcium and the potential need for supplements.
    • Advise the patient to reduce alcohol and caffeine intake and to stop smoking, as these can inhibit calcium absorption or increase its excretion.
    HYPERCALCEMIA (CALCIUM EXCESS)

    Hypercalcemia is an electrolyte imbalance in which the total serum calcium level is above 10.5 mg/dL or 2.62 mmol/L. The excitable tissues most affected are the heart, skeletal muscles, nerves, and intestinal smooth muscles.

    CAUSES OF HYPERCALCEMIA
    • Actual calcium excesses: Excessive oral intake of calcium, Excessive oral intake of vitamin D, Kidney failure, Use of Thiazide diuretics, Malignancies (e.g., leukemia), Hyperparathyroidism, Paget’s disease, Prolonged immobilization.
    • Relative calcium excess: Use of glucocorticoids, Dehydration, Digoxin toxicity.
    CLINICAL MANIFESTATIONS
    • Increased heart rate and blood pressure
    • Cyanosis and pallor
    • Muscular weakness, Hypoactive deep tendon reflexes
    • Constipation, Anorexia, Nausea, and vomiting
    • Polyuria and polydipsia, Dehydration
    • Lethargy, Deep bone pain, Pathologic fractures
    • Flank pain, Calcium stones, Hypertension
    MANAGEMENT
    • Treating the underlying cause is essential (e.g., chemotherapy, parathyroidectomy).
    • Discontinue IV solutions or oral drugs containing calcium or vitamin D.
    • IV normal saline (0.9% sodium chloride) is given to increase kidney excretion of calcium.
    • Thiazide diuretics are replaced with diuretics that enhance calcium excretion, such as furosemide (Lasix).
    • Administer drugs that inhibit calcium reabsorption from bone, such as phosphorus, calcitonin, and prostaglandin synthesis inhibitors (aspirin, NSAIDs).
    • Implement cardiac monitoring for patients with hypercalcemia.

    PHOSPHORUS IMBALANCES

    Normal serum level of phosphorus ranges from 3.0 to 4.5 mg/dL. It is essential to the function of muscles and red blood cells, the formation of ATP, and maintaining acid-base balance. It also provides structural support to bones and teeth.

    PHOSPHORUS DEFICITS (HYPOPHOSPHATEMIA)

    Hypophosphatemia is an electrolyte imbalance in which the serum phosphorus level is below 3.0 mg/dL. Because phosphorus and calcium are interrelated, a decrease in serum phosphorus can cause an increase in serum calcium.

    CAUSES OF HYPOPHOSPHATEMIA
    • Malnutrition, Starvation
    • Use of aluminum hydroxide-based or magnesium-based antacids
    • Hyperparathyroidism, Hypercalcemia, Kidney failure, Malignancy
    • Hyperglycemia, Hyperalimentation, Respiratory alkalosis, Uncontrolled diabetes mellitus
    • Alcohol abuse or withdrawal, Vitamin D deficiency, Diarrhea, Burns, and severe wounds
    CLINICAL MANIFESTATIONS
    • Paresthesia, Muscle weakness
    • Bone pain and tenderness, Chest pain
    • Confusion, Cardiomyopathy, Respiratory failure
    • Seizures, Tissue hypoxia, Increased susceptibility to infections, Nystagmus
    • On laboratory investigation, the serum phosphorus level is less than 2.5mg/dl.
    MANAGEMENT
    • Discontinue drugs that promote phosphorus loss (e.g., antacids, osmotic diuretics, calcium supplements).
    • Oral replacement with phosphorus along with vitamin D may correct moderate deficits.
    • IV phosphorus is given cautiously and slowly for severe cases (less than 1 mg/dL).
    • Nutrition therapy involves increasing the intake of phosphorus-rich foods while decreasing calcium-rich foods.
    PHOSPHORUS EXCESS (HYPERPHOSPHATEMIA)

    Hyperphosphatemia is an electrolyte imbalance in which the serum phosphorus level is above 4.5 mg/dL. High levels are generally well-tolerated by most body systems.

    CAUSES
    • Certain cancer treatments, Tumor lysis syndrome
    • Acute and chronic renal failure
    • Excessive intake of phosphorus, Vitamin D excess
    • Respiratory and metabolic acidosis
    • Hypoparathyroidism, Volume depletion
    • Leukemia/lymphoma treatment with cytotoxic drugs
    • Increased tissue breakdown, Rhabdomyolysis
    CLINICAL MANIFESTATIONS
    • Tetany, Tachycardia
    • Anorexia, Nausea, and vomiting
    • Signs and symptoms of associated hypocalcemia
    • Hyperactive reflexes
    • Soft tissue calcifications in lungs, kidneys, heart, and cornea
    • Lab analysis shows serum phosphorus level exceeds 4.5mg/dl.
    MANAGEMENT
    • Management often entails managing the associated hypocalcemia.
    • Give Vitamin D orally or parenterally.
    • Restrict dietary phosphorus; promote excretion with loop diuretics and volume replacement with saline.
    • Dialysis may also lower phosphorus levels.
    • Advise the client to avoid phosphate-containing laxatives and enemas.

    CHLORIDE IMBALANCES

    Chloride (Cl-) is the major anion of the ECF. The normal plasma concentration ranges from 98 to 106 mEq/L. It enters the body through dietary intake and is important in the formation of hydrochloric acid in the stomach and in maintaining acid-base balance.

    CHLORIDE EXCESS (HYPERCHLOREMIA)

    Hyperchloremia exists when the serum level of chloride exceeds 107 mEq/L. Hypernatremia, bicarbonate loss, and metabolic acidosis can occur with high chloride levels.

    CLINICAL MANIFESTATIONS
    • Tachypnea, Weakness, and lethargy
    • Deep and rapid respirations
    • Diminished cognitive ability
    • Hypertension; pitting oedema
    • Dysrhythmias
    MANAGEMENT
    • Correcting the underlying cause and restoring electrolyte, fluid, and acid-base balance are essential.
    • Ringer's lactate solution may be administered.
    • IV sodium bicarbonate may be given to increase bicarbonate levels, which promotes renal excretion of chloride ions.
    • Diuretics may be administered to eliminate chloride.
    • Monitor vital signs, arterial blood gas values, and patient status.
    • Educate the patient about diet and maintaining adequate hydration.
    HYPOCHLOREMIA

    Hypochloremia is a serum chloride level below 97 mEq/L.

    CAUSES
    • Addison’s disease
    • Reduced chloride intake or absorption
    • Untreated diabetic ketoacidosis
    • Excessive sweating, Vomiting, and nausea
    • Gastric suctioning, Diarrhea, Draining fistulas and ileostomies
    • Rapid removal of ascitic fluid with high sodium content
    • IV fluids that lack chloride (e.g., dextrose and water)
    SIGNS AND SYMPTOMS
    • Agitation, Irritability
    • Tremors, Muscle cramps, Hyperactive deep tendon reflexes, Hypertonicity, Tetany
    • Slow, shallow respirations
    • Seizures, Dysrhythmias, Coma
    MANAGEMENT
    • Administer IV normal saline (0.9% sodium chloride) or half-strength saline (0.45% sodium chloride).
    • If the patient is using a diuretic, it may be discontinued or another one prescribed.
    • Nursing care is similar to that for other electrolyte imbalances.

    MAGNESIUM IMBALANCES

    Magnesium (Mg++) is an abundant intracellular cation. The normal serum Mg+ level is 1.3 to 2.3 mg/dL. It is the most abundant intracellular cation after potassium and plays a role in both carbohydrate and protein metabolism. Magnesium balance is important for neuromuscular function, as it acts directly on the myoneural junction. It also affects cardiovascular activity, producing vasodilation. 60% of magnesium is deposited in bone and soft tissues; it is absorbed in the small intestine and excreted by the kidneys.

    MAGNESIUM DEFICITS (HYPOMAGNESEMIA)

    Hypomagnesemia refers to a below-normal serum magnesium concentration (<1.3 mg/dL) and is frequently associated with hypokalemia and hypocalcemia.

    CAUSES
    • Chronic alcoholism, Malabsorptive disorders
    • Hyperthyroidism, Hyperaldosteronism
    • Diuretic phase of renal failure
    • Diabetic ketoacidosis
    • Refeeding after starvation, Parenteral nutrition
    • Chronic laxative use, Diarrhea
    • Acute myocardial infarction, Heart failure
    • Certain pharmacological agents (e.g., gentamicin)
    CLINICAL MANIFESTATIONS
    • Neuromuscular irritability
    • Positive Trousseau's sign and positive Chvostek's sign
    • Insomnia, Mood changes, Anorexia
    MANAGEMENT
    • Mild deficits can be corrected by diet alone (e.g., green leafy vegetables, nuts, seeds, seafood, peanut butter, cocoa).
    • Oral magnesium salts (oxide or gluconate form) can be administered but may produce diarrhea.
    • IV parenteral magnesium can be administered for severe hypomagnesemia.
    • Monitor vital signs frequently during magnesium administration.
    • Monitor urine output.
    • Calcium gluconate must be readily available to treat hypocalcemic tetany or hypermagnesemia.
    MAGNESIUM EXCESS (HYPERMAGNESEMIA)

    Hypermagnesemia occurs when the serum magnesium level is over 2.3 mg/dL. It is a rare electrolyte abnormality because the kidneys efficiently excrete magnesium.

    CONTRIBUTING FACTORS
    • Renal failure
    • Diabetic ketoacidosis, Adrenocortical insufficiency
    • Increased absorption due to intestinal hypomotility
    • Lithium intoxication
    • Extensive soft tissue injury (e.g., trauma, shock, sepsis, cardiac arrest)
    SIGNS AND SYMPTOMS
    • At mildly increased levels: low blood pressure (vasodilation), nausea, vomiting, weakness, facial flushing.
    • At higher concentrations: lethargy, difficulty speaking (dysarthria), drowsiness.
    • Severe untreated cases: Coma, cardiac arrest.
    • Platelet clumping and delayed thrombin formation.
    MANAGEMENT
    • Avoid administering magnesium to patients with renal failure.
    • Discontinue parenteral and oral magnesium salts.
    • IV calcium gluconate antagonizes the cardiovascular and neuromuscular effects of magnesium.
    • The nurse monitors the level of consciousness and vital signs, noting hypotension and shallow respirations.
    • Identify and assess patients at risk for hypermagnesemia.

    FLUID AND ELECTROLYTE IMBALANCE Read More »

    Hemorrhage

    HAEMORRHAGE: Nursing Lecture Notes

    Nursing Notes - Burns

    HAEMORRHAGE: Nursing Lecture Notes

    Haemorrhage, commonly known as bleeding, is the loss of blood from the circulatory system, specifically from blood vessels. It is a critical medical condition that, if uncontrolled, can lead to severe physiological compromise and death. The body possesses intrinsic defence mechanisms, primarily through the process of clotting (hemostasis), to prevent excessive blood leakage. However, these mechanisms can be deficient due to underlying diseases, absence of essential clotting factors, or the use of anticoagulant medications.

    Types of Haemorrhage

    Haemorrhage is classified based on several key characteristics to aid in diagnosis, prognosis, and management. These classifications include:

    1. The type of blood vessel involved.
    2. The location or situation of the haemorrhage.
    3. The time of occurrence or duration of the haemorrhage.
    Classification by Blood Vessels Involved

    The characteristics of bleeding often provide clues as to which type of blood vessel has been compromised:

    1. Arterial Haemorrhage:
  • Appearance: Characterized by bright red blood due to its high oxygen content.
  • Flow Pattern: Blood spurts rhythmically with each heartbeat, reflecting the pulsatile nature of arterial blood flow under high pressure.
  • Rate of Loss: Blood loss is typically rapid and significant, often more profound than from a vein of a corresponding size, due to the higher pressure within arteries.
  • Bleeding from Vessel Ends: Blood loss can occur from both ends of the severed vessel.
  • 2. Venous Haemorrhage:
  • Appearance: The bleeding is characterized by dark purplish-red blood due to its lower oxygen content.
  • Flow Pattern: Blood flows at a more even, gentle, and continuous rate, lacking the pulsatile nature of arterial bleeding.
  • Rate of Loss: While it can still be substantial, the rate of blood loss is generally less rapid than that of arterial haemorrhage for comparable vessel sizes.
  • 3. Capillary Haemorrhage:
  • Appearance: Blood typically oozes slowly over the surface of the wound. It is darkish red in colour.
  • Rate of Loss: Although the immediate rate of loss is slow, over several hours, continuous oozing can result in considerable and clinically significant blood loss, especially over large surface areas (e.g., abrasions, extensive burns).
  • Classification by Time or Duration of Haemorrhage

    The timing of haemorrhage relative to an injury or surgical procedure provides important diagnostic and prognostic information:

    1. Primary Haemorrhage:
  • Definition: This refers to bleeding that occurs immediately at the time of injury or surgical incision.
  • Mechanism: It continues until it spontaneously ceases through the body's natural hemostatic mechanisms (e.g., vasoconstriction, platelet plug formation, coagulation) or is controlled by artificial means (e.g., direct pressure, ligation, cauterization).
  • Examples: A simple cut finger, bleeding during an operative incision.
  • 2. Reactionary or Intermediate Haemorrhage:
  • Definition: Bleeding that occurs within the first 24 hours following an injury or surgical operation.
  • Mechanism: It often results from the resolution of vasoconstriction that was initially induced by shock, hypothermia, or drugs administered at the time of injury or operation. Small blood vessels that were initially cut but could not bleed due to these factors begin to bleed as blood pressure rises and normal physiological responses return.
  • Common Sites: This type of haemorrhage is common following operations on highly vascular organs such as the kidney, thyroid gland, breast, and uterus (e.g., total hysterectomy).
  • Additional Contributing Factors:
    • Increased intravascular pressure due to actions such as coughing or vomiting.
    • Increased venous pressure.
    • Physical excitement or administration of stimulant drugs.
  • Clinical Tip: To minimize the risk, restrict the number of visitors to a minimum in the immediate postoperative period to reduce patient excitement and physical exertion.
  • 3. Secondary Haemorrhage:
  • Definition: This type of bleeding occurs later, typically between 36 hours to 48 hours, or even up to 10-14 days after the initial injury or operation.
  • Mechanism: It is usually indicative of an underlying complication, often related to infection or mechanical irritation, leading to the erosion or sloughing of blood vessel walls.
  • Common Causes:
    • Sepsis: Bacterial infection leading to inflammation and enzymatic destruction of vessel walls.
    • Enzymatic Action: For example, the action of pepsin on a bleeding peptic ulcer, eroding the vessel.
    • Mechanical Pressure: Persistent pressure from a drainage tube or foreign body (e.g., bone fragment) eroding a vessel.
    • Presence of Carcinoma: Malignant tumors can erode blood vessels, leading to chronic or acute bleeding.
  • Classification by Situation or Location of Haemorrhage

    This classification distinguishes whether the blood loss is visible externally or contained within body cavities:

    1. External or Revealed Haemorrhage:
    • Definition: This is bleeding that is directly visible, either from an open wound on the body surface or from a natural body orifice (e.g., epistaxis from the nose, hematemesis from vomiting blood, melena/hematochezia from the rectum).
    • Visibility: Blood is immediately apparent and can be quantified relatively easily.
    2. Internal or Concealed Haemorrhage:
    • Definition: This refers to bleeding that occurs into an internal body cavity or tissue space, where the blood loss is not immediately visible externally.
    • Locations: Common sites include the peritoneal cavity (e.g., ruptured spleen), pleural cavity (e.g., hemothorax), retroperitoneal space, lumen of hollow organs (e.g., intestines, stomach, bladder), or within the tissues of a limb (e.g., large hematoma).
    • Diagnosis: Since the bleeding is concealed, diagnosis relies heavily on the patient's symptoms and signs of hypovolemia and shock. It may be "revealed" later if the blood exits the body (e.g., vomited blood, blood passed per rectum) or by the formation of bruising and swelling on the surface of the body.

    Clinical Picture: Signs and Symptoms of Haemorrhage

    The clinical presentation of haemorrhage varies depending on the amount, rate, and duration of blood loss. Symptoms and signs reflect the body's compensatory mechanisms attempting to maintain vital organ perfusion, followed by the failure of these mechanisms as blood loss becomes severe. The progression is often categorized into stages of shock.

    Early Symptoms and Signs (Compensatory Stage / Class I & II Haemorrhage)

    These signs indicate the body's initial attempts to compensate for blood loss (up to 15-30% of blood volume). The sympathetic nervous system is activated.

    Neurological/Mental Status:
    • Restlessness and Anxiety: Often one of the earliest signs, resulting from cerebral hypoperfusion and increased catecholamine release.
    • Increased Thirst: Due to fluid shifts and activation of the renin-angiotensin-aldosterone system.
    Cardiovascular:
    • Slightly Increased Pulse Rate (Mild Tachycardia): The heart beats faster to maintain cardiac output despite reduced blood volume.
    • Blood Pressure (BP) Maintained or Slightly Lowered: Due to peripheral vasoconstriction attempting to shunt blood to vital organs. Orthostatic hypotension may be present.
    Integumentary (Skin):
    • Pallor (Paleness): Due to vasoconstriction and reduced blood flow to the skin.
    • Coldness: Skin feels cool to the touch (subnormal temperature, e.g., 36.9°C), also due to peripheral vasoconstriction.
    • Slightly Clammy Skin: Due to increased sweating from sympathetic activation.
    Renal:
    • Oliguria (Reduced Urine Output): The kidneys conserve fluid and blood flow is shunted away from them.
    Symptoms and Signs of Severe Haemorrhage (Decompensatory & Irreversible Stages / Class III & IV Haemorrhage)

    These signs manifest when compensatory mechanisms are overwhelmed, and blood loss exceeds 30-40% of total blood volume. This leads to profound organ hypoperfusion and cellular dysfunction.

    Neurological/Mental Status:
    • Lethargy, Drowsiness, Confusion: Progressive worsening of cerebral hypoperfusion.
    • Decreased Responsiveness: Leading to stupor and eventually coma.
    • Blindness, Tinnitus (Buzzing in the Ears): Severe cerebral ischemia.
    Cardiovascular:
    • Extreme Pallor: Face becomes ashen white, indicating severe cutaneous vasoconstriction and lack of circulating blood.
    • Profound Coldness: Core body temperature may drop significantly (e.g., 36°C or lower), indicating severe hypothermia and circulatory collapse.
    • Pulse: Very rapid in rate (severe tachycardia, >120 bpm), thready in volume (barely palpable), and often irregular in rhythm, indicating a severely compromised cardiac output.
    • Blood Pressure: Extremely low (severe hypotension), indicating failed compensation and impending circulatory collapse.
    • Low Venous Pressure: Due to severely depleted intravascular volume.
    Respiratory:
    • Air Hunger: The patient gasps for breath, with respirations becoming rapid and sighing (Kussmaul-like breathing), as the body attempts to compensate for metabolic acidosis resulting from anaerobic metabolism.
    • Dyspnea: Difficult or labored breathing.
    Renal:
    • Diminished Urine Volume: Progressing to anuria (no urine production), which may result in acute renal failure due to prolonged renal ischemia.
    Other Systemic Effects:
    • Extreme Thirst: Persists and worsens.
    • Metabolic Acidosis: Due to widespread anaerobic metabolism and lactic acid accumulation.
    • Eventual Multi-Organ Dysfunction Syndrome (MODS): Leading to irreversible organ damage and death.

    Management of Haemorrhage: Principles of Care

    Effective management of haemorrhage is time-sensitive and aims to stop the bleeding, restore circulating blood volume, optimize tissue perfusion, and treat any underlying coagulopathy.

    Immediate Priorities (The "ABCDE" Approach):
    1. Airway: Ensure a patent airway. If the patient's consciousness is compromised, intubation may be necessary to protect the airway and facilitate ventilation.
    2. Breathing: Assess respiratory effort and oxygenation. Administer high-flow oxygen (e.g., via non-rebreather mask) to maximize oxygen delivery to tissues. Provide ventilatory support if needed.
    3. Circulation: This is paramount in haemorrhage.
      • Direct Pressure: Apply direct pressure to any visible external bleeding site.
      • Large-Bore IV Access: Establish at least two large-bore intravenous (IV) lines for rapid fluid and blood product administration.
      • Fluid Resuscitation: Begin rapid infusion of crystalloid solutions (e.g., 0.9% Normal Saline, Lactated Ringer's) while awaiting blood products.
      • Blood Transfusion: Initiate blood product transfusion (e.g., packed red blood cells, fresh frozen plasma, platelets) as soon as possible, especially for significant haemorrhage. Consider massive transfusion protocols if appropriate.
      • Identify and Stop Bleeding: Promptly identify the source of bleeding and take definitive steps to control it (e.g., surgical intervention, endoscopic intervention, interventional radiology embolization, tourniquet for severe limb trauma).
    4. Disability (Neurological Status): Assess the patient's level of consciousness (e.g., AVPU scale, GCS) to monitor cerebral perfusion.
    5. Exposure and Environment: Fully expose the patient to identify all injuries and bleeding sites. Prevent hypothermia by covering the patient with warm blankets, as hypothermia exacerbates coagulopathy.
    Ongoing Management and Monitoring:
    • Continuous Monitoring: Continuously monitor vital signs (heart rate, blood pressure, respiratory rate, oxygen saturation), ECG, and urine output. An arterial line may be used for continuous blood pressure monitoring.
    • Laboratory Monitoring: Serial blood tests, including complete blood count (CBC), electrolytes, coagulation profile (PT, PTT, fibrinogen), blood type and cross-match, and lactate levels (to assess tissue perfusion and acidosis).
    • Temperature Control: Maintain normothermia; hypothermia can worsen coagulopathy and acidosis.
    • Correct Coagulopathy: Administer specific clotting factors, cryoprecipitate, or prothrombin complex concentrates (PCCs) as indicated, especially if the patient is on anticoagulants or has a pre-existing coagulopathy. Consider tranexamic acid (TXA) as an antifibrinolytic.
    • Pain Management: Administer analgesia cautiously, considering its potential effects on blood pressure and mental status.
    • Prevent Complications: Implement strategies to prevent acute kidney injury, acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), and multi-organ dysfunction syndrome (MODS).
    • Definitive Treatment: Address the underlying cause of the haemorrhage once the patient is stabilized.

    Management and Interventions

    Effective management of haemorrhage is time-sensitive and requires a multi-faceted approach. The primary goals are to:

    1. Arrest the haemorrhage: Control and stop the bleeding at its source.
    2. Restore blood volume: Replenish lost blood and fluids to maintain adequate circulation.
    3. Manage the extravasated blood: Address the consequences of blood accumulating outside the vessels, and support the body's physiological responses.
    I. Arrest of Haemorrhage: Controlling the Bleeding Source

    The methods to control bleeding depend on whether the haemorrhage is revealed (external) or concealed (internal).

    A. Arrest of Revealed (External) Haemorrhage

    Most forms of external haemorrhage can be controlled by applying pressure directly or indirectly to the bleeding site. The choice of method depends on the severity and nature of the bleeding:

    Direct Pressure (Pad & Bandage):
    • Method: This is the simplest, most effective, and often the first line of treatment. Apply a clean, sterile pad directly to the bleeding wound and secure it firmly with a bandage.
    • Mechanism: Direct pressure compresses the bleeding vessels, allowing clots to form.
    • Advantages: Highly effective, causes minimal damage, and can be performed quickly.
    Digital Pressure (Indirect Pressure):
    • Method: Fingers are used to apply firm pressure over the pressure point of an artery that supplies the wounded area, proximal to the injury.
    • Mechanism: Temporarily occludes the main arterial blood supply to the limb or area.
    • Application: Commonly used in areas where direct pressure might be difficult or less effective, such as on the neck (e.g., carotid artery pressure point in severe facial bleeding). It provides temporary control until definitive measures can be taken.
    Elevation of the Limb:
    • Method: Raising the injured limb above the level of the heart.
    • Mechanism: Reduces hydrostatic pressure in the veins, which can help control venous bleeding.
    • Application: A classical method for controlling bleeding from ruptured varicose veins of the leg or other venous injuries.
    Application of Tourniquet:
    • Method: A constricting band applied proximally to an injury on a limb. Tourniquets include devices like the Samway anchor, Esmarch’s Elastic bandage, or inflatable cuffs.
    • Application: **Use ONLY for the control of heavy, life-threatening bleeding from a limb when other methods have failed or are not feasible.**
    • Dangers: If left on for more than 30 minutes, it carries significant risks such as gangrene, nerve damage, and reperfusion injury upon removal. Requires careful application and monitoring.
    Surgical Ligation:
    • Method: Surgically tying off the bleeding vessel with sutures.
    • Application: Necessary if bleeding continues despite less invasive measures or for larger vessels.
    Coagulation (Electrocautery/Diathermy):
    • Method: Application of heat (via electrical current) to the bleeding point to seal small vessels.
    • Application: Commonly used in surgical settings for precise haemostasis.
    Therapeutic Embolisation:
    • Method: Deliberate occlusion of bleeding blood vessels by introducing embolic materials (e.g., coils, particles, glues) through an angiographic catheter under imaging guidance.
    • Application: Common in controlling bleeding from internal sources like oesophageal varices, gastric ulcers, or arterial bleeds in inaccessible locations. Examples of emboli include lyophilized human dura mater.
    Packing:
    • Method: Insertion of sterile gauze or specialized hemostatic dressings into a wound or cavity to apply internal pressure.
    • Application: A temporary measure for very severe bleeding, often used in theatre to control sudden haemorrhage or for diffuse bleeding that is difficult to ligate.
    Styptics/Topical Haemostatics:
    • Method: Substances capable of causing bleeding to stop when applied locally.
    • Examples: Include topical thrombin, collagen, gelatin sponges, oxidized regenerated cellulose (Oxycel). Some natural substances like snake venom or adrenaline can also act as styptics.
    • Application: Used locally in certain cases for low-pressure bleeding from capillaries and venules.
    B. Arrest of Concealed (Internal) Haemorrhage

    Controlling internal haemorrhage is more challenging as direct pressure is often not possible. Management focuses on internal pressure, addressing the underlying cause, and enhancing coagulation.

    Surgical Ligation/Repair:
    • Method: Direct surgical intervention to identify and ligate or repair the bleeding vessel.
    • Application: Often the definitive treatment for ruptured organs (e.g., ruptured spleen, liver laceration) or major vessel injuries.
    Empty Organ of Blood Clot if Possible:
    • Method: Removing blood clots from a hollow organ can allow it to contract and seal bleeding vessels.
    • Application: For severe bleeding from the bladder, passing a catheter and emptying it of clots can help the bladder contract and tamponade bleeding.
    Encouraging Vessels to Contract (Pharmacological):
    • Method: Administration of medications that promote vasoconstriction.
    • Examples:
      • Adrenaline (Epinephrine): Can be added to saline or sodium bicarbonate for washing out an organ to encourage vessel constriction (e.g., in some urological procedures, often done two-hourly).
      • Ergometrine: Used post-partum to stimulate uterine contractions and reduce bleeding after the birth of the placenta.
      • Vasopressin (Pitressin): Can be used effectively in the control of bleeding from oesophageal varices by causing splanchnic vasoconstriction.
    Increasing Blood Coagulability:
    • Method: Administering agents that correct clotting factor deficiencies.
    • Application: Very valuable when the mechanism of clotting is deficient.
      • Vitamin K (IM): Important in jaundiced patients or those with liver dysfunction who are bleeding due to impaired synthesis of Vitamin K-dependent clotting factors.
      • Factor VIII Concentrate: Indicated in patients with Haemophilia A.
      • Fresh Frozen Plasma (FFP), Platelets, Cryoprecipitate: Administered to provide clotting factors or platelets as needed.
    Internal Packing/Haemostatic Agents:
    • Method: Using specialized materials to provide internal pressure or promote clotting.
    • Examples:
      • Gauze soaked in adrenaline can be effective in certain sites (e.g., nasal packing for epistaxis).
      • Oxycel (oxidized regenerated cellulose), Fibrin glue, or a piece of the patient’s own crushed muscle can be used to promote local haemostasis in surgical beds.
    Antibiotics:
    • Method: Systemic antibiotic administration.
    • Application: Essential in secondary haemorrhage, especially when caused by infection, to control sepsis which contributes to vessel wall breakdown.
    Internal Pressure (Balloon Tamponade):
    • Method: Applying pressure from within a lumen using an inflatable balloon.
    • Application: Applied by the balloon of a triluminal tube (e.g., Sengstaken-Blakemore tube) in bleeding oesophageal varices or by the balloon of a Foley catheter in a post-prostatectomy cavity.
    Antifibrinolytic Therapy:
    • Method: Use of medications that inhibit the breakdown of blood clots.
    • Example: Achieved by the use of Tranexamic Acid (TXA), which stabilizes clots and reduces bleeding in various conditions.
    II. Restoration of Blood Volume and Oxygen Carrying Capacity

    Replacing lost fluid and blood is crucial to maintain adequate circulation and tissue perfusion.

  • Immediate Priorities (The "ABCDE" Approach in an Emergency):
    • Airway: Ensure a patent airway. Intubation may be necessary if consciousness is compromised to protect the airway and facilitate ventilation.
    • Breathing: Assess respiratory effort and oxygenation. Administer high-flow oxygen (e.g., via non-rebreather mask) to maximize oxygen delivery to tissues. Provide ventilatory support if needed.
    • Circulation: This is paramount.
      • Large-Bore IV Access: Establish at least two large-bore intravenous (IV) lines (e.g., 14-16 gauge) for rapid fluid and blood product administration. Central venous access may be needed in severe cases.
      • Fluid Resuscitation: Begin rapid infusion of crystalloid solutions (e.g., 0.9% Normal Saline, Lactated Ringer's) as initial volume expanders while awaiting blood products. Monitor response.
      • Blood Transfusion: Initiate blood product transfusion (e.g., packed red blood cells to increase oxygen-carrying capacity; fresh frozen plasma for clotting factors; platelets for thrombocytopenia) as soon as possible, especially for significant haemorrhage. Consider massive transfusion protocols (MTP) for severe, ongoing bleeding.
    • Disability (Neurological Status): Assess the patient's level of consciousness (e.g., AVPU scale, GCS) to monitor cerebral perfusion and detect neurological changes.
    • Exposure and Environment: Fully expose the patient to identify all injuries and bleeding sites. Prevent hypothermia by covering the patient with warm blankets, as hypothermia significantly exacerbates coagulopathy and metabolic acidosis.
  • Ongoing Monitoring and Support:
    • Continuous Monitoring: Continuously monitor vital signs (heart rate, blood pressure, respiratory rate, oxygen saturation), ECG for cardiac rhythm, and hourly urine output via an indwelling urinary catheter (a sensitive indicator of renal perfusion). An arterial line provides continuous and accurate blood pressure monitoring.
    • Laboratory Monitoring: Frequent serial blood tests are essential:
      • Complete Blood Count (CBC): To monitor hemoglobin and hematocrit.
      • Electrolytes and Renal Function Tests: To assess fluid and electrolyte balance and kidney function.
      • Coagulation Profile: PT, PTT, fibrinogen to assess clotting status.
      • Blood Type and Cross-match: For blood product compatibility.
      • Lactate Levels: To assess tissue perfusion and severity of acidosis.
      • Arterial Blood Gases (ABGs): For oxygenation, ventilation, and acid-base balance.
    • Temperature Control: Actively maintain normothermia using warming blankets and warmed fluids.
    • Correct Coagulopathy: Actively manage any identified clotting factor deficiencies by administering specific factor concentrates, cryoprecipitate, or prothrombin complex concentrates (PCCs), especially if the patient is on anticoagulants or has a pre-existing coagulopathy.
  • A. Nursing Diagnoses for Patients with Haemorrhage (Examples)

    Nursing diagnoses are clinical judgments about individual, family, or community responses to actual or potential health problems/life processes. For haemorrhage, they often focus on perfusion, fluid balance, and anxiety.

    • Deficient Fluid Volume related to active blood loss, as evidenced by hypotension, tachycardia, decreased urine output, cool/clammy skin, and altered mental status.
    • Ineffective Tissue Perfusion (specify: Cerebral, Cardiopulmonary, Renal, Gastrointestinal, Peripheral) related to hypovolemia and decreased oxygen-carrying capacity, as evidenced by altered mental status, oliguria, delayed capillary refill, weak pulses, or abnormal ABGs.
    • Decreased Cardiac Output related to reduced preload (due to blood loss), as evidenced by hypotension, tachycardia, and signs of hypoperfusion.
    • Risk for Shock related to uncompensated blood loss.
    • Anxiety/Fear related to threat to health status, perceived loss of control, and critical illness.
    • Risk for Imbalanced Body Temperature (Hypothermia) related to hypovolemia, decreased metabolic rate, and rapid fluid resuscitation.
    • Acute Pain related to injury or invasive procedures, as evidenced by patient report, guarding behavior, or vital sign changes.
    B. Nursing Interventions for Haemorrhage

    Nursing interventions are actions designed to achieve patient outcomes related to the nursing diagnoses. These are broad categories and require specific adaptation based on the individual patient's condition and the type of haemorrhage.

    1. Prioritize ABCs and Rapid Response:
      • Immediately assess and maintain airway patency, breathing effectiveness, and circulation.
      • Activate rapid response team/code team according to facility protocol for acute haemorrhage.
      • Stay with the patient; do not leave an acutely bleeding patient unattended.
    2. Control Bleeding (Nursing Actions):
      • Apply direct, firm pressure to any external bleeding site using sterile dressings. Elevate the affected limb if appropriate.
      • Prepare and assist with tourniquet application if indicated for life-threatening limb haemorrhage (monitor time).
      • Prepare for and assist with surgical or interventional radiology procedures for definitive bleeding control.
      • Ensure all lines, drains, and tubes are securely in place to prevent accidental dislodgement.
    3. Fluid and Blood Volume Resuscitation:
      • Establish and maintain multiple large-bore IV access sites.
      • Administer prescribed IV fluids (crystalloids) and blood products (PRBCs, FFP, platelets) rapidly, using rapid infusers if available, and monitor patient response.
      • Monitor for signs of fluid overload or transfusion reactions.
      • Ensure warmed fluids and blood products are used to prevent hypothermia.
    4. Continuous Assessment and Monitoring:
      • Monitor vital signs (BP, HR, RR, SpO2, Temp) continuously (e.g., every 5-15 minutes or more frequently in acute phase).
      • Assess level of consciousness (LOC) and neurological status frequently for signs of cerebral hypoperfusion.
      • Monitor hourly urine output via indwelling catheter; report output less than 0.5 mL/kg/hour.
      • Assess skin color, temperature, and capillary refill for signs of peripheral perfusion.
      • Monitor dressing for increasing saturation and measure blood loss (e.g., weigh pads, assess drainage in collection devices).
      • Review and trend laboratory results (Hgb, Hct, lactate, coagulation studies, electrolytes).
      • Assess for signs of internal bleeding if concealed haemorrhage is suspected (e.g., increasing abdominal girth, distension, pain, bruising, changes in bowel sounds, persistent hypotension despite fluid resuscitation).
    5. Oxygenation and Respiratory Support:
      • Administer oxygen as prescribed to maintain SpO2 >94%.
      • Monitor respiratory effort and patterns; prepare for ventilatory support if respiratory distress or failure occurs.
    6. Maintain Normothermia:
      • Use warming blankets, warmed IV fluids, and control room temperature to prevent and treat hypothermia.
    7. Pain and Anxiety Management:
      • Administer analgesics as prescribed, carefully monitoring for effects on vital signs.
      • Provide emotional support, calm reassurance, and clear, concise explanations to the patient and family. Address their fears and anxiety.
      • Create a calm environment as much as possible.
    8. Prevent Complications:
      • Maintain strict asepsis for all invasive procedures (IV insertion, catheter care) to prevent infection.
      • Implement measures to prevent pressure injuries due to immobility and hypoperfusion.
      • Initiate DVT prophylaxis as soon as appropriate and ordered.
      • Monitor for signs of acute kidney injury or multi-organ dysfunction.
    9. Documentation and Communication:
      • Accurately and timely document all assessments, interventions, and patient responses.
      • Communicate effectively and frequently with the interdisciplinary team (physicians, respiratory therapists, lab, blood bank) regarding patient status and changes.
      • Handover critical information thoroughly.
    Nursing Notes - Burns

    Special Types and Terms of Haemorrhage

    Haemorrhage can manifest in various specific ways depending on its anatomical location, and certain terms are used to describe these particular presentations.

    Specific Types of Haemorrhage

    These are haemorrhages that are identified by their site of external manifestation or unique characteristics:

    Epistaxis (Nosebleed):
    • Description: Bleeding from the nose.
    • Common Causes:
      • Injury to the nose (trauma).
      • Fracture base of the skull (indicating severe trauma).
      • Ulceration of the mucus membrane of the nose (e.g., from dryness, digital manipulation).
      • Bleeding disorders (e.g., leukemia, haemophilia).
      • Local infections like rhinitis.
      • Venous congestion associated with heart diseases (e.g., heart failure).
      • Hypertension (high blood pressure).
    • Management:
      • Initial First Aid: The patient should sit upright, leaning slightly forward (not backward, to prevent blood from flowing down the throat), and firm pressure should be applied to the soft cartilaginous part of the nostrils for 10-15 minutes.
      • Sponge the face with cold water or apply a cold compress to the bridge of the nose.
      • If bleeding persists, medical attention is required.
      • Medical Interventions:
        • The nose may be packed with sterile gauze, sometimes impregnated with vasoconstrictors like adrenaline, or specialized nasal packing devices.
        • The nasal plug/pack is typically left in situ for 24-48 hours, with careful monitoring due to the risk of infection (sepsis) and potential airway obstruction.
        • Recurrent or persistent bleeding may be treated by chemical (e.g., silver nitrate) or electrical (electrocautery) cauterization of the bleeding vessel.
        • In severe cases, surgical ligation of feeding arteries or interventional radiology embolization may be necessary.
  • Haemoptysis:
    • Description: This is the coughing up of blood from the respiratory tract (lungs or bronchial tubes). The blood is typically bright red, frothy (mixed with air), and alkaline. It is often mixed with sputum.
    • Common Causes:
      • Pulmonary diseases (e.g., Tuberculosis (TB), Bronchiectasis, Pneumonia, Lung abscess).
      • Lung cancer (bronchogenic carcinoma).
      • Benign tumours of the respiratory tract.
      • Injury to the lungs or chest (trauma).
      • Pulmonary embolism (especially with infarction).
      • Venous congestion into the lungs (e.g., severe heart failure, mitral stenosis).
      • Blood disorders (e.g., leukemia, coagulopathies).
      • Rupture of an aortic aneurysm into a bronchus (rare but life-threatening).
      • Foreign body aspiration.
    • Management:
      • Immediate Action: Severe cases require urgent medical assessment and treatment to secure the airway and control bleeding.
      • Patient Care:
        • Maintain a calm environment and reassure the patient (care of the mind).
        • Position the patient sitting up to aid breathing and prevent aspiration; usually, the bleeding side down if known, to protect the contralateral lung.
        • Ensure total rest.
        • Frequent mouth washes to remove the taste of blood.
        • Provide non-stimulating fluids.
        • Keep the patient warm.
      • Medical Interventions:
        • Collect blood for Hemoglobin (HB) estimation, blood grouping, and cross-matching for potential transfusion.
        • Blood transfusion if bleeding is severe and causing hemodynamic instability.
        • Administer antitussives (e.g., codeine, morphine) to suppress cough, which can exacerbate bleeding, and to provide sedation.
        • Treat the underlying cause (e.g., antibiotics for infection, chemotherapy/radiation for cancer, bronchoscopic intervention).
        • Bronchoscopy for localization and intervention (e.g., laser coagulation, balloon tamponade).
        • In severe cases, surgical resection may be considered.
  • Haematemesis:
    • Description: This is vomiting blood from the upper gastrointestinal (GI) tract (esophagus, stomach, or duodenum). The blood may be bright red (indicating active, fresh bleeding) but is more often brown, resembling "coffee grounds" due to the action of gastric acid on hemoglobin. It is acidic.
    • Common Causes:
      • Peptic ulcers (gastric or duodenal ulcers).
      • Acute gastritis (inflammation of the stomach lining, often due to corrosive drugs like NSAIDs/Aspirin, or alcohol taken on an empty stomach).
      • Gastric cancer.
      • Oesophageal varices (dilated veins in the esophagus, often due to portal hypertension, e.g., in liver cirrhosis).
      • Mallory-Weiss tear (tear in the esophageal lining due to forceful vomiting/retching).
      • Swallowed blood (e.g., after severe epistaxis or haemoptysis).
      • Fracture base of the skull (blood from nasopharynx tracking down).
      • Post-operative bleeding after nose and throat surgeries.
      • Blood disorders (e.g., leukemia, coagulopathies).
    • Management:
      • Initial Assessment: Immediate assessment of hemodynamic stability.
      • Investigations:
        • Collect blood for HB, grouping, and cross-matching.
        • Stool for occult blood test.
      • Patient Care:
        • Ensure absolute rest and quietness.
        • Frequent monitoring of vital signs.
        • Provide emotional support.
      • Medical Interventions:
        • Fluid resuscitation and blood transfusion if indicated.
        • Administer morphine for pain and sedation as needed, while carefully monitoring respiratory status and vital signs.
        • Specific Treatment According to Cause:
          • Proton pump inhibitors (PPIs) for ulcers/gastritis.
          • Endoscopic intervention (e.g., banding, sclerotherapy for varices; clipping, coagulation for ulcers).
          • Surgical intervention for refractory cases or severe bleeds not amenable to endoscopy.
        • General nursing care including NPO (nothing by mouth) and monitoring for further bleeding.
  • Melaena:
    • Description: This is the passage of dark, tarry, sticky stools (faeces) with a characteristic foul odor. It results from bleeding in the upper GI tract, where blood has been digested and altered by intestinal bacteria. Usually indicates bleeding from a site high in the GIT (esophagus, stomach, duodenum, or small bowel).
    • Common Causes:
      • Duodenal ulcers (most common cause).
      • Gastric ulcers.
      • Gastritis.
      • Bleeding from the small bowel.
      • Swallowing of a large amount of blood (e.g., from severe epistaxis or haemoptysis).
      • Certain medications like iron supplements (can cause dark stools, but not true melaena, which is positive for occult blood) or bismuth subsalicylate.
    • Investigation: Stool for occult blood (guaiac test) confirms the presence of blood. Endoscopy is usually required to identify the source.
    • Management: As for internal haemorrhage, focusing on hemodynamic stabilization, identifying the source, and definitive treatment (often endoscopic or medical).
  • Haematuria:
    • Description: Is the passage of blood in urine, making it appear pink, red, or dark brown/cola-colored. It can be macroscopic (visible to the naked eye) or microscopic (detectable only with urinalysis).
    • Common Causes:
      • Trauma to the urinary tract (e.g., ruptured kidney, bladder injury).
      • Urinary tract infections (UTIs).
      • Renal calculi (kidney stones) – often associated with pain.
      • Chronic kidney infection (pyelonephritis).
      • Tuberculosis (TB) of the kidney.
      • Post-operative causes (e.g., prostatectomy, bladder surgery).
      • Growths/tumours in the bladder, kidney, or prostate (can be painless haematuria, requiring urgent investigation).
      • Leukemia or other blood disorders affecting clotting.
      • Inflammation of the urinary tract (e.g., cystitis, glomerulonephritis, bilharzia/schistosomiasis).
      • Certain medications (e.g., anticoagulants).
    • Management:
      • Less Severe Cases: Rest in bed and reassurance, along with treatment of the underlying cause.
      • More Severe Cases: If there's significant damage to the bladder or kidneys, or a mass, surgical intervention (e.g., to remove stones, excise tumors, repair trauma) may be indicated.
      • Specific treatment varies significantly according to the underlying cause. This may include antibiotics for infection, medical management for kidney disease, or interventional procedures for stones/tumors.
  • Special Terms for Haemorrhage from Specific Sites/Contexts

    These terms describe the location of blood accumulation or specific bleeding patterns:

    • Haemothorax: Bleeding into the pleural cavity (space between the lungs and the chest wall). Often due to chest trauma or lung pathology.
    • Haemoperitoneum: Bleeding into the peritoneal cavity (abdominal cavity). Often associated with ruptured organs (e.g., spleen, liver) or major vessel injury.
    • Haemarthrosis: Bleeding into a joint space. Common in individuals with bleeding disorders like haemophilia or following trauma.
    • Menorrhagia: Excessive or prolonged menstrual bleeding at regular intervals.
    • Metrorrhagia: Irregular, acyclic uterine bleeding occurring between expected menstrual periods.
    • Menometrorrhagia: Prolonged or excessive bleeding occurring at irregular and frequent intervals.
    • Haemopericardium: Bleeding into the pericardial sac (the sac surrounding the heart). Can lead to cardiac tamponade, a life-threatening condition.
    • Haematomyelia: Bleeding into the spinal cord parenchyma.
    • Haematoma: A localized collection of extravasated blood, usually clotted, in an organ, space, or tissue (e.g., a bruise).
    • Ecchymosis: A discoloration of the skin resulting from bleeding underneath, typically caused by bruising. Larger than petechiae.
    • Petechiae: Small (1-2 mm), pinpoint, non-blanching red or purple spots on the skin caused by minor hemorrhage.
    • Purpura: Red or purple discolored spots on the skin that do not blanch on pressure, caused by bleeding underneath the skin. Larger than petechiae but smaller than ecchymoses.

    HAEMORRHAGE: Nursing Lecture Notes Read More »

    BURNS NURSES REVISION UHPAB (1)

    BURNS LECTURE NOTES

    Nursing Notes - Burns

    BURNS

    Burns are injuries to the skin due to extremes of temperature i.e cold or hot, chemicals or radiations. Burns occur when there is injury to the tissues of the body caused by heat, chemicals, electric current or radiations.

    Anatomical review of the skin.
    • Skin is the largest organ of the body that protects against injury, loss of fluid and from infection.
    • It also maintains a constant body temperature with sebum, hair follicles. The skin has got two layers;
    • -Epidermis (outer layer)
    • and -Dermis (inner layer).
    • Under the skin is sebaceous tissue mainly fat.
    • The top part of the skin (epidermis) is made up of fat cells which are constantly shed and are replaced by new cells which come from underneath the layer.
    • The epidermis has got an oily layer called sebum produced by sebaceous gland. It prevents heat loss (it thickens when it’s cold).
    • Sebum makes the skin water proof, makes skin supplies plethoric.
    • The dermis contains blood vessels, nerve, muscles, sweat glands, hair follicles, sebaceous glands; the ends of the sensory nerves in the dermis register sensation from the body surface.

    TYPES OF BURNS

    Thermal burns

    These can be caused by flame, flash, scald, or contact with hot object.

    Chemical burns

    These are the result of tissue injury and destruction from necrotizing substance. Chemical burns are most commonly caused by acids; however alkalis can also cause a burn e.g. cleaning agents, drain cleaners and lye’s.

    Electrical burns

    These result from coagulation necrosis that is caused by intense heat generated from an electrical current. It can also result from direct damage to nerves and vessels causing tissue anoxia and death. The severity of the electrical injury depends on the amount of voltage, tissue resistance, current pathways, and surface area in contact with the current and on the length of time the current flow was sustained.

    Smoke and inhalation injury

    It results from inhalation of hot air or noxious chemicals that can cause damage to the tissues of the respiratory tract. Smoke inhalation injuries are an important determinant of motility in the fire victims.

    • Carbon monoxide poisoning.
    • Inhalation injury above the glottis, it is thermally produced and above is chemically produced.
    • Inhalation injury below the glottis is related to the length of exposure to smoke or toxic fumes.
    Cold thermal injury

    These are due to extreme cold temperatures e.g. frost bite, freezing metals.

    Irradiations

    I.e. sun burn, radiation therapy, medical therapy e.g. treatment of cancer of the cervix.

    SCALDS

    Are injuries caused by moist heat, and hot liquids?

    CLASSIFICATION OF BURN INJURY

    Burns are classified according to;

    • Depth of the burn.
    • Extent of the burn.
    • Location of the burn.
    DEPTH OF THE BURN

    In the past, burns were defined by degrees; first degree, second degree and third degree burns. They now advocate more explicit definition categorizing the burn according to the depth of skin destruction.

    • SUPERFICIAL BURNS: Involves only the outer most skin layer. They have redness, swelling, and tenderness. It usually heals well, if first aid is given promptly and if blisters don’t form. Burns from sun, charcoal stove. Are also known as first degree burns.
    • PARTIAL THICKNESS BURNS: The damage to epidermis is severe, we almost always have blister formation and very painful. Completely destroys the epidermis. Blisters form because of fluid released from the damaged tissue, usually heal well but may be fatal if more than 30% of skin is involved. Also known as second degree burns.
    • FULL THICKNESS/DEEP BURNS: The dermis is involved including other structures like muscles, bones. All layers involved blood vessels, fat and nerves. There is either no pain or minimal. This may mislead that the burns are not severe. You need immediate help; the skin is pale and charred (like toasted meat).
    LOCATION OF BURN
    • The location of the burn wound is related to the severity of the burn injury. Burns to the face and neck and circumferential burns of the chest may inhibit respiratory function by virtue of mechanical obstruction secondary to edema or scar formation.
    • These injuries may also indicate the possibility of inhalation injury and respiratory mucosal damage.
    • Burns of the hands, feet, joints, and eyes are of concern because they make self-care very difficult and may jeopardize future function.
    • The ears and nose, composed mainly of cartilage, are susceptible to infection because of poor blood supply to the cartilage.
    • Burns of buttocks and genitalia are highly susceptible to infection.
    • Circumferential burns of the extremities can cause circulatory compromise distal to the burn with subsequent neurologic impairment of the affected extremity.
    • Patient may develop compartment syndrome from direct heat damage to the muscles, multiple intravenous access attempts or pre burn vascular problems.

    EXTENT OF A BURNT AREA.

    Two commonly used guides for determining the total body surface area (TBSA) affected or the extent of a burn wound are the Lund-Browder chart and rule of nines. Only partial thickness burns and full thickness burns are included when calculating the burnt area because it is more accurate. The patient’s age, in proportions to relative body area size, is taken into account. For irregular or odd-shaped burns, the palmar surface of the patient’s hand is considered to be approximately 1% of the TBSA.

    USES OF WALLACE’S RULE OF 9 (for Adults)
    • Head and neck is 9% (NB. The head alone is 8% and the neck is 1%).
    • Each arm is 9% (both arms carry 18%).
    • Anterior trunk-18% (chest and abdomen).
    • Posterior trunk-18% (from neck to symphysis, coccyx).
    • Each lower limb-18% (both limbs 36%).
    • Perineal/genital area-1%.
    WALLACE’S RULE IN CHILDREN (slight difference)
    • Head -18%
    • Arms -9%
    • Chest and trunk -18%
    • Back of trunk -18%
    • Legs -14%
    • Perineal and genital area -1%
    Use of Lund Browder’s chart
    Head7%
    Neck2%
    Anterior trunk13%
    Posterior trunk13%
    Rt buttock2.5%
    Lt buttock2.5%
    Genitalia1%
    Rt upper arm4%
    Lt upper arm4%
    Rt lower arm3%
    Lt lower arm3%
    Rt hand2.5%
    Lt hand2.5%
    Rt thigh9.5%
    Lt thigh9.5%
    Rt leg7%
    Lt leg7%
    Rt foot3.5%
    Lt foot3.5%
    Total100%

    PREDISPOSING FACTORS & ASSESSMENT

    PREDISPOSING FACTORS
    • Age, children and old (weak)
    • Disease-commonly epilepsy, leprosy
    • alcoholism, and cigarette smoking
    • Occupation-e.g. electricians, industrial workers, alcohol brewers
    • Poverty e.g crowded kitchen.
    • Fights (wrangles and conflicts)
    • Race e.g. frost bite common in whites
    • Skin bleaching.
    SIGNS AND SYMPTOMS OF BURNS
    • History of involvement with any of the cause of burns.
    • Blistering due to vasodilation hence collection of serum between the dermis and epidermis.
    • Necrosis due to coagulation of proteins.
    • Functional impairment of the temperature regulation process of the burnt area.
    • Shock due to fluid loss and blood loss (hypovoleamic shock).
    • Shock can also occur due to severe pain (neurogenic shock).
    • Toxaemia depending on the type and cause of burns. Histamines and adenocytes produced are released from the burnt surface and they find their way into the blood stream.
    ASSESSMENT OF BURNS
    • Circumstances and cause of burns i.e. where and when did it occur.
    • Was the airway affected? Assess whether it was in closed spaces (inhaled hot gases).
    • Assess the extent, location and depth. The bigger the burn, the higher the extent (%) the greater the surface area.

    CRITERIA FOR ADMISSION OF BURNT PATIENT.

    • Burns involving the airways
    • Full thickness.
    • Admit all children for observation
    • The bigger the surface area above 5% superficial burns.
    • Special areas involved e.g. face, hands, joints, neck, and genitalia.
    • Circumferential burns give a tourniquet effect may cause gangrene.
    • Electric burns because all electric burns are said to be deep until proved otherwise.
    • Chemical burns, can continue burning for several days.
    • If you are not sure; below 15% burns, GIT absorption is intact, oral route work in fluid replacement.

    FIRST AID FOR BURNS.

    AIMS
    • Maintain an open airway.
    • Minimize the risk of infection
    • Treat any other associated injuries
    • Make sure you watch for signs of shock.
    • Make sure you check for signs of respiratory distress.
    ACHIEVING THE FIRST AID MANAGEMENT
    • Decrease temperature /stop fire if possible.
    • Call for help.
    • Evacuate the patient; pour water on the affected area.
    • Undress the patient.
    • Assume the airway has been affected until proved otherwise continue pouring water on the burnt area for minimally 20min to reduce injury i.e neutralized heat.
    • Lie patient down but avoid the burnt area touching the ground.
    • Pour water on burns for 20mins.
    • Continue pouring water until pain stops.
    • Put on gloves.
    • Remove rings, shoes, watches, necklace, belts, stockings and clothes before tissue damage.
    • Cover the injured area with sterile cloth or sterile dressing.
    • Record details of injuries.
    • Regularly monitor and record the vital signs and the level of consciousness, urine output.
    • Treat shock if present.
    • Re-assure and give words of hope.
    • Avoid over cooling the patients especially children and elderly because they may get hypothermia.
    • Do not remove anything stuck on the burnt wound to prevent spread of infections and more injuries.
    • Do not touch the burnt area with your fingers.
    • Do not apply lotions on the burn apart from anti-septic.
    • Do not burst any blisters.
    • If burns are on the face do not cover them for easy assessment of respiratory distress.

    FOR AIRWAY BURNS

    Burns of the face, mouth, throat, nose, airway passages, are serious because the airway passage rapidly becomes swollen because of inflammation.

    How to assess for airway burns.
    • History taking.
    • Respiratory rate increased.
    • Examine the nostrils i.e there is no soot.
    • Examine the nasal hair i.e if they are burnt, short with a Taft.
    • There would be damaged to the skin around the nose and mouth.
    • Has difficulty in breathing.
    • Has hoarse voice due to inflammation of vocal cords.
    AIMS OF MANAGEMENT
    • To recognize the airway burns.
    • To maintain the airway and after take the patient to hospital management.
    First Aid Management for Airway Burns
    • Open the mouth (airway) and check whether he is breathing.
    • Sweep the tongue.
    • If not breathing, give rescue breaths, mouth to mouth. Put patient in a recovery position and call for help.
    • Take the steps to improve the airway e.g remove clothes or unbutton, clear the place.
    • Re assure the patient.
    • Monitor and record vital observations until help arrives.
    Interventions in the hospital

    Put patient on oxygen therapy. Intubate the patient with endotracheal tube, connected to oxygen cylinder.

    FOR CHEMICAL BURNS

    The commonest cause of chemical burns in Uganda are domestic fights and it’s commonly women to women.

    FIRST AID
    • Ensure your safety.
    • Disperse the powerful chemical by wiping away the chemical, pouring water (plenty) for about 30min. This dilutes the chemical.
    • Arrange to transfer patient to hospital but label the chemical if you have identified it.
    • Do not attempt to neutralize the chemical with another chemical.
    • Ensure that you remove contaminated clothing.
    • If the face has been burnt, expect the burns of the airway. Make sure that the airway is open and functioning.
    How do you recognize chemical burns
    • There may be chemicals in the vicinity.
    • The pain is intense and stinging (itching).
    • Later discoloration, blistering and peeling of the skin forming wound.
    • Supportive treatment with anti-inflammatory drugs, anxiolytics, painkillers.
    • Re-assure the patient.

    FOR ELECTRIC BURNS

    These occur when electricity passes through the body, person a conductor through which electricity passes. Most of the visible damage occurs at points of entry and exit of the current. You may have an internal tract where wounds are mainly concentrated. The current follows mainly muscle, nerves and blood vessels. If it follows the nerves, it can cause cardiac arrest which is the commonest cause of death in electric burns.

    NOTE:

    The current will cause muscle spasms which may prevent patient from breaking contact with electric source hence continues electric shock. Switch off the main switch. Do not touch a patient with live hands or metallic materials to break the contact. Assess the ABC immediately. Shout for help. Be safe, do something and waste no time.

    FIRST AID {AIMS}
    • Ensure your safety first.
    • Ensure that electric source is disconnected or blocked i.e you may use your shoes or clothes to disconnect the source from patient.
    • Flood the exit and entry points with water to cool the burn and prevent further burning process.
    • Protect the burn from infection.
    • Re-assure
    • Give treatment for shock.

    ASSESSMENT FOR BURNS TO THE EYE.

    Patient is usually unconscious or semi-conscious. If eyes are burnt with chemicals, it will cause scarring and blindness so gets water and wash the eyes to dilute and disperse the acid. Let them not rub the eyes (don’t touch the eyes), continue pouring water in the eyes.

    SIGNS AND SYMPTOMS OF EYE BURNS.
    • Continue watering the eyes
    • Swollen
    • redness
    Treatment
    • Have gloves on.
    • Lie the patient with the affected eye low and most so that water does not affect the rest of the face.
    • Open that eye and run cold water for more than 30 minutes.
    • Make sure that the water is penetrating into all parts of the eye. Open eye with your hands if they cannot open.
    • Get a clean bandage and close the eye until the opthalmist comes.
    • Try to identify the chemical and record or label.

    GENERAL MANAGEMENT OF BURNS

    Aims of management
    • To arrest bleeding.
    • To prevent the condition from worsening.
    • To preserve life.
    • To correct electrolyte imbalances. Etc

    N.B Burns with a TBSA greater than 15% the following is done. It is a surgical emergency so quit assessment and immediate care is needed plus quick admission. (Immediate nursing care).

    Airway maintenance

    Through opening and clearing the airway, In case of a suspected cervical spine, keep movements of the neck to a minimum and never hyperflexion or hyperextend to head or neck. If smoke inhalation is suspected intubate before oedema makes it difficult. The head of the bed is elevated and nasal pharynx suction is done incase of excessive secretions.

    Breathing and ventilation.

    Expose the chest and make sure that chest expansion is adequate. Always provide oxygen in severe burns or when inhalation injury is suspected give 4-8 hr/min. Assess breathing sounds and respiratory rate. Monitor for hypoxia. Encourage aggressive pulmonary care e.g. turning, coughing and deep breathing.

    Circulation and hemorrhage control

    Stop bleeding with direct pressure. Check capillary if greater than 2secs it means hypovolaemia. Monitor pulse and check pallor which occurs with 30%. Insert 2 large bore peripheral IV lines in superficial burns.

    Assessment of the neurological status.

    This is done through using a glasgowcoma scale. This helps to check the levels of consciousness that is checking;

    • Alertness (A)
    • Response to vocal stimuli (V)
    • Response to painful stimuli (U)
    • Unresponsive.

    Examine the pupils for light reaction. Hypoxia can cause reduced levels of response. Keep the patient flat and covered with a sterile sheet to relieve the pain induced by circulatory air currents. Keep the patient warm and check for any adherent clothing, cut around it, when removing the cloth i.e cut around the edges of the clothes disturbing the wound as little as possible.

    GENERAL NURSING CARE OF A BURN PATIENT

    Maintenance of an aseptic environment.

    All attendants must wear capes, gowns, masks and cover shoes. Hands should be washed thoroughly. Cleaning should consist of sloughing skin and use of aseptic solution like hibitane or savlon, the surface is then dried with warm air or sterile dressing (gauze). Afterwards the burnt area is treated by either the exposure method or closed of dressing.

    Management of wounds.
    • Nurse the patient in a special room to prevent infections (burns are normally sterile). Make sure that you maintain asepsis as much as possible.
    • Avoid touching the wound with bear hands i.e. use sterile gloves and use a disinfectant after attending to the patient.
    • You must have a mask while examining the patient.
    • Use the mosquito net to protect the patient from flies.
    • Limit visitors as these increase the risk of infection we give definitive treatment (dress) after resuscitation for burns involving the eyes attend to airway then the burnt eyes and resuscitation later.

    FLUID REPLACEMENT

    Always replace the lost fluids, can be IV or orally since fluid absorption in the GIT is now very poor. IV fluids are recommended. If an adult loses 15% of the body fluid or as little as 10% in a small child, this will lead to shock. Replacement needs to be continued for at least 48hours.

    In deep burns, plasma is given as this is what the patient is losing in 48hours. Towards the end of 48hours, whole blood is given to replace RBCs destroyed, later N/S to replace electrolytes. Glucose to replace energy loss.

    Fluid Replacement Calculation (Parkland Formula basis)

    The volume of fluid replacement (Y) = (weight in kg X surface area of burns) mls / 2. This volume is given over 8 hours.

    Example: Y = (70kg X 20%) / 2 = 700mls. Y=700mls in 4 hours so multiply it by 2 = 1400mls in first 8hours.

    • Y=1400mls in the next 16hours
    • Y=1400mls in the next 24hours

    But adults require 3 liters in 24hours with or without burns (normal physiological fluid requirement). How much is needed Z = (3000x1)/24 = 125mls per hour.

    The rate of fluid loss in children below 6yrs is twice that of adults hence double the fluids to be replaced.

    Management of Wounds

    • Nurse the patient in a special room to prevent infections (burns are normally sterile).
    • Avoid touching the wound with bear hands i.e. use sterile gloves and use a disinfectant after attending to the patient.
    • You must have a mask while examining the patient.
    • Use the mosquito net to protect the patient from flies.
    • Limit visitors as these increase the risk of infection.
    EXPOSED METHOD

    Nothing touches the burn except air and anti-bacterial agent e.g. hibitane, ghee and honey. This indicates for burns of the face especially scalds. It is good for areas that are difficult to dress e.g. perineum, buttocks, face, Axilla.

    OCCLUSIVE / CLOSED METHOD.

    This method keeps the wound sterile, also aims at applying anti-bacterial agents. E.g. ghee, honey, neomycin cream, tetracycline, hibitane etc.

    PROCEDURE FOR BURN DRESSING APPLICATION

    This procedure emphasizes a "no-touch" sterile technique to prevent infection.

    1. Ensure Sterility: Utilize a number touch technique, meaning no human hand shall directly touch the burn or the dressing materials, except when sterile. All instruments used must be sterile.
    2. Consider Sedation: Administer appropriate sedation if required, to ensure patient comfort and cooperation during the procedure.
    3. Clean the Area: Gently clean the burn wound and the surrounding healthy skin with Chlorhexidine solution.
    4. Manage Blisters: Leave any blisters intact; do not puncture them, as they provide a natural protective barrier against infection.
    5. Apply Impregnated Gauze: Using a sterile spatula, carefully apply the impregnated gauze directly onto the burn wound.
    6. Apply Dry Gauze: Cover the impregnated gauze with at least 2cm of dry gauze.
    7. Add Cotton Wool: Place approximately 3cm of cotton wool over the dry gauze layer.
    8. Secure with Crepe Bandage: Apply a crepe bandage to secure all layers of the dressing.
    9. Extend Dressing Margins: Ensure the entire dressing extends beyond the wound margin by about 10cm to provide adequate coverage and protection.

    Prevention of Burns

    • Treat the epileptics, teach them, and mobilize the community about epileptics with burns.
    • Raised fire places.
    • Keep flues out of the houses e.g. petrol.
    • Keep chemical in raised places and out of reach of children.
    • Avoid bleaching.
    • Keep children out of hot or fire places.

    COMPLICATIONS OF BURNS

    • Shock.
    • Excessive oedema, quite dangerous if burns are of the face, neck as it causes obstruction of the airway and oesophagus.
    • Renal failure; due to failure to give adequately fluids.
    • Toxaemia and infections; infection of the burnt area causing sepsis resulting in septicaemia, gas gangrene and tetanus.
    • Depression of the bone marrow.
    • Contractures.
    • Keloid formation
    • Electrolyte imbalance
    • Anaemia due to haemolysis.
    • Thrombosis due to plasma loss.
    • GIT bleeding, ulcers develop due to increased production of gastric acid.
    • Paralytic ileus.
    • Sepsis.
    • Neuromas
    • Cosmetic disfigurement
    • Mal-function of the body part

    BURNS LECTURE NOTES Read More »

    Surgical Shock

    Surgical Shock

    Nursing Notes - Surgical Shock

    COMMON SURGICAL CONDITIONS

    SHOCK

    Definition
    • Shock is a state of poor perfusion with impaired cellular metabolism manifesting with severe pathophysiological abnormalities. It is due to circulatory collapse and tissue hypoxia. Shock is meant by ‘inadequate perfusion` to maintain normal organ function.
    • Shock is a life-threatening medical condition characterized by inadequate tissue perfusion and oxygenation, leading to cellular dysfunction, widespread organ damage, and if uncorrected, irreversible organ failure and death. It's not simply low blood pressure, but rather a critical imbalance between the demand for oxygen and nutrients by the cells and the body's ability to deliver them.

    • The condition associated with circulatory collapse when the arterial blood pressure is too low to maintain an adequate supply of blood to the tissues.
    • The failure of the circulatory system to adequately supply oxygen to the tissues.

    ETIOLOGY AND PATHOPHYSIOLOGY

    Shock has a multitude of causes. The most common cause of shock is severe blood loss i.e. if it exceeds 1.2 liters.

    The circulation may fail because of the following:
    Sudden malfunction of the heart. This may occur as a result of:
    • Coronary arterial occlusion with acute myocardial ischaemia.
    • Trauma with structure damage to the heart
    • Toxaemia – bacterial or viral
    • Effects of drugs
    Deficient oxygenation of the blood in the lungs as a result of:
    • Postoperative atelectasis and pneumonia
    • Thoracic injuries, particularly tension pneumothorax, bruising and laceration of the lungs
    • Obstruction of the pulmonary artery by an embolus.
    • Disturbances of lung function following surgery and anesthesia.
    Reduction in the blood volume (oligaemia or hypovolaemia). This may occur from the loss of:
    • Whole blood – haemorrhage
    • Plasma – significant in burns
    • Water and electrolyte which occurs in: Peritonitis, Intestinal obstruction and paralytic ileus, Severe diarrhoea and vomiting.
    Miscellaneous: there are a number of other conditions that may lead to shocked state with low blood pressure:
    • Adrenal deficiency
    • The common faint. The arterioles in the muscle relax
    • Over dosage of drugs eg analgesic like pethedine
    • Following therapy with beta blocking agents for angina, hypertension etc
    • Noxious stimuli, such as pain, if severe with cause vasodilation
    • Systolic dysfunction: it is the inability of the heart to pump forward like in myocardial infarction and cardial myopathy
    • Diastolic dysfunction: it is the inability of the heart to fill e.g. cardiac tamponade, ventricular hypertrophy and cardial myopathy
    • Dysrhythmias eg in bradyrhythmias and tarchyrhythmias
    • Structural factors like valvular stenosis or regurgitation, ventricular septal rapture
    • Internal bleeding like fracture of long bones, ruptured spleen heamopneumothorax and severe pancreatitis
    • Fluid shift like in burns and cysts
    • Spinal anesthesia
    • Vasomotor center depression

    Types, and Clinical Manifestations

    Types of Shock: Categorization by Underlying Pathophysiology

    Shock is broadly classified into several types based on the primary physiological mechanism causing the inadequate tissue perfusion. While these types have distinct primary causes, they often share common clinical features and can coexist or lead to one another.

    1. Hypovolemic Shock (Inadequate Circulating Volume)
  • Definition: Results from a significant reduction in circulating intravascular fluid volume, leading to decreased venous return to the heart, reduced cardiac preload, and consequently, decreased cardiac output.
  • Pathophysiology: The heart has insufficient blood to pump effectively, leading to a drop in blood pressure and inadequate tissue perfusion. The body attempts to compensate by increasing heart rate (tachycardia) and constricting peripheral blood vessels (vasoconstriction) to shunt blood to vital organs.
  • Causes:
  • Hemorrhage (Absolute Hypovolemia):
    • Trauma (external or internal bleeding)
    • Gastrointestinal bleeding (e.g., peptic ulcer, variceal bleeding)
    • Post-surgical bleeding
    • Obstetric hemorrhage (e.g., postpartum hemorrhage)
    • Aortic rupture
  • Fluid Loss (Relative Hypovolemia/Third Spacing):
    • Severe Dehydration: Vomiting, diarrhea, inadequate fluid intake.
    • Severe Burns: Massive fluid shifts from intravascular space into interstitial space.
    • Peritonitis/Bowel Obstruction: Fluid sequestration within the abdominal cavity or bowel lumen.
    • Diabetic Ketoacidosis (DKA) / Hyperosmolar Hyperglycemic State (HHS): Profound osmotic diuresis.
    • Excessive Diuretic Use.
  • 2. Cardiogenic Shock (Pump Failure)
  • Definition: Occurs when the heart's pumping ability is severely impaired, leading to a significant reduction in cardiac output despite adequate intravascular volume. The heart simply cannot pump enough blood to meet the body's demands.
  • Pathophysiology: Decreased myocardial contractility and/or structural issues prevent effective forward flow of blood, leading to decreased cardiac output, increased pulmonary and systemic venous pressures, and subsequent tissue hypoperfusion.
  • Causes:
    • Myocardial Infarction (MI): Especially extensive anterior or left ventricular MI, which damages a significant portion of the heart muscle.
    • Severe Arrhythmias: Tachyarrhythmias (e.g., ventricular tachycardia, atrial fibrillation with rapid ventricular response) or bradyarrhythmias that significantly reduce ventricular filling time or heart rate.
    • Valvular Heart Disease: Acute severe mitral regurgitation, aortic stenosis.
    • Cardiomyopathies: Acute exacerbation of chronic heart failure.
    • Myocarditis: Inflammation of the heart muscle.
    • Acute Papillary Muscle Rupture.
  • 3. Distributive Shock (Vasogenic Shock / Abnormal Vasodilation)
  • Definition: Characterized by severe peripheral vasodilation, leading to a maldistribution of blood volume within the vascular system. Despite normal or increased total blood volume, there is a relative hypovolemia as the vascular "container" expands, causing insufficient blood return to the heart and decreased tissue perfusion.
  • Pathophysiology: Loss of sympathetic vasomotor tone, or release of excessive vasodilatory substances, causes widespread arterial and/or venous dilation. This leads to a profound drop in systemic vascular resistance (SVR) and a pooling of blood in the peripheral circulation, effectively decreasing central venous pressure and cardiac preload.
  • Subtypes and Causes:
    a. Septic Shock:
    • Definition: A life-threatening organ dysfunction caused by a dysregulated host response to infection, leading to persistent hypotension requiring vasopressors to maintain mean arterial pressure (MAP) ≥ 65 mmHg and having a serum lactate level > 2 mmol/L despite adequate fluid resuscitation.
    • Pathophysiology: Triggered by severe infection (bacterial, viral, fungal). Pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) released from pathogens and damaged host cells activate a complex inflammatory cascade. This leads to widespread endothelial dysfunction, microcirculatory alterations, profound vasodilation, increased capillary permeability (fluid leakage into interstitial spaces leading to relative hypovolemia and edema), and myocardial depression.
    • Causes: Severe infections, particularly with Gram-negative bacteria (e.g., *E. coli, Klebsiella, Pseudomonas*) or Gram-positive bacteria (e.g., *Staphylococcus aureus, Streptococcus pneumoniae*). Common sources include pneumonia, urinary tract infections, abdominal infections (e.g., appendicitis, diverticulitis), and skin/soft tissue infections.
    • Clinical Features: Often presents as "warm shock" in early stages (warm, flushed skin, bounding pulses) due to vasodilation, progressing to "cold shock" as compensatory mechanisms fail and cardiac output falls.
    b. Anaphylactic Shock:
    • Definition: A severe, life-threatening systemic allergic reaction characterized by rapid onset of profound vasodilation, increased vascular permeability, and bronchoconstriction.
    • Pathophysiology: Exposure to an allergen triggers a massive release of inflammatory mediators (e.g., histamine, leukotrienes, prostaglandins) from mast cells and basophils. These mediators cause widespread vasodilation and leakage of fluid from capillaries into the interstitial space, leading to circulatory collapse and airway obstruction.
    • Causes: Exposure to allergens such as insect stings, certain foods (e.g., peanuts, shellfish), medications (e.g., antibiotics, NSAIDs), or latex.
    c. Neurogenic Shock:
    • Definition: Occurs due to loss of sympathetic nervous system tone, leading to widespread vasodilation and pooling of blood in the periphery. Unlike other forms of shock, the heart rate may be paradoxically normal or even bradycardic.
    • Pathophysiology: Damage to the sympathetic nervous system (typically above T6) interrupts the normal vasoconstrictive impulses to peripheral blood vessels. This results in unopposed parasympathetic activity, leading to profound vasodilation and often bradycardia.
    • Causes:
      • Spinal cord injury (most common cause).
      • Spinal anesthesia.
      • Guillain-Barré Syndrome.
      • Severe head trauma (less common as a primary cause).
      • Certain drugs (e.g., ganglionic blockers, adrenergic antagonists).
    d. Endocrine Shock (e.g., Adrenal Crisis, Myxedema Coma):
    • Definition: Shock resulting from acute hormonal deficiencies that disrupt normal cardiovascular function and metabolic processes.
    • Causes: Adrenal crisis (acute adrenal insufficiency leading to severe hypotension refractory to fluids and vasopressors due to lack of cortisol) or myxedema coma (severe hypothyroidism leading to decreased cardiac output, bradycardia, and hypothermia).
    4. Obstructive Shock (Extracardiac Obstruction to Blood Flow)
  • Definition: Occurs when there is a physical obstruction to blood flow, either into or out of the heart, leading to reduced cardiac output. The "pump" (heart) is functioning, but its ability to fill or eject blood is physically blocked.
  • Pathophysiology: Blockage of major blood vessels or mechanical compression of the heart or great vessels impedes venous return, ventricular filling, or cardiac ejection, resulting in decreased cardiac output and tissue hypoperfusion.
  • Causes:
    • Pulmonary Embolism (PE): Massive PE obstructs blood flow from the right ventricle into the pulmonary circulation.
    • Cardiac Tamponade: Accumulation of fluid or blood in the pericardial sac, compressing the heart and preventing adequate ventricular filling.
    • Tension Pneumothorax: Air accumulation in the pleural space collapses the lung and shifts the mediastinum, compressing the great vessels and heart.
    • Constrictive Pericarditis (severe acute exacerbation).
    • Critical Valvular Stenosis (less common as primary obstructive shock).
  • 5. Vasovagal Shock (Neurocardiogenic Syncope)
    • Definition: While often presenting as syncope (fainting), severe forms can lead to a transient state of shock. It's characterized by a sudden, exaggerated reflex response that results in both widespread peripheral vasodilation and bradycardia.
    • Pathophysiology: Triggered by certain stimuli (e.g., pain, fear, emotional stress, prolonged standing, specific odors). The vagus nerve is overstimulated, leading to parasympathetic activation (bradycardia) and sympathetic inhibition (vasodilation), causing a temporary drop in blood pressure and cerebral perfusion.
    • Clinical Significance: Usually self-limiting and resolves upon lying down. Rarely life-threatening unless associated with significant trauma from a fall. Not considered a true "shock state" in the critical care sense as it's typically transient and reversible with simple measures.

    Recognition Features of Shock / Signs and Symptoms of Shock

    The signs and symptoms of shock are a reflection of the body's compensatory mechanisms attempting to maintain vital organ perfusion, followed by the failure of these mechanisms as shock progresses. The specific presentation can vary slightly depending on the type and stage of shock.

    I. Early / Compensatory Stage (Body's attempt to maintain vital organ perfusion)

    In this initial stage, the body activates its sympathetic nervous system and hormonal responses to maintain blood pressure and vital organ blood flow. This often leads to increased heart rate and vasoconstriction.

    Cardiovascular:
    • Rapid Pulse (Tachycardia): The earliest and most consistent sign. The heart beats faster to compensate for reduced cardiac output.
    • Normal to Slightly Decreased Blood Pressure: The body is still able to maintain BP through vasoconstriction.
    Integumentary (Skin):
    • Pale, Cool, Clammy Skin: Due to peripheral vasoconstriction shunting blood away from the skin to vital organs. The clamminess is due to diaphoresis (sweating) caused by sympathetic stimulation.
    • Delayed Capillary Refill: >2 seconds (indicates poor peripheral perfusion).
    Neurological:
    • Restlessness, Anxiety, Agitation: Early signs of cerebral hypoperfusion and catecholamine release.
    • Increased Thirst: Due to fluid shifts and activation of the renin-angiotensin-aldosterone system.
    Renal:
    • Oliguria: Decreased urine output (< 0.5 mL/kg/hr) as kidneys conserve fluid and blood flow is shunted away.
    Respiratory:
    • Slightly Increased Respiratory Rate: Due to metabolic acidosis (from anaerobic metabolism) and increased oxygen demand.
    II. Progressive / Decompensatory Stage (Compensatory mechanisms begin to fail)

    As shock progresses, the compensatory mechanisms become overwhelmed, leading to widespread cellular hypoxia, anaerobic metabolism, and accumulation of lactic acid. Organ function begins to deteriorate.

    Cardiovascular:
    • Hypotension: Significant drop in systolic blood pressure (<90 mmHg or MAP <65 mmHg) or a drop of >40 mmHg from baseline. This is a critical sign that compensation has failed.
    • Weak, Thready Pulse: Rapid but difficult to palpate, indicating profound vasoconstriction and low stroke volume.
    Integumentary:
    • Progressively Colder, Mottled Skin: Especially in extremities (e.g., "grey-blue skin," cyanosis of lips and nail beds) due to severe peripheral vasoconstriction and pooling of deoxygenated blood.
    Neurological:
    • Lethargy, Drowsiness, Confusion: Worsening cerebral hypoperfusion.
    • Decreased Responsiveness to Stimuli.
    Gastrointestinal:
    • Nausea, Vomiting: Due to reduced blood flow to the GI tract.
    • Abdominal Pain.
    Respiratory:
    • Rapid, Shallow Breathing (Tachypnea): The body's attempt to compensate for metabolic acidosis.
    Metabolic:
    • Increasing Lactic Acidosis: Due to anaerobic metabolism.
    III. Irreversible / Refractory Stage (Widespread cellular and organ damage)

    In this final stage, cellular and organ damage becomes so severe that it is irreversible, even with aggressive interventions. Multi-organ dysfunction syndrome (MODS) develops, leading inevitably to death.

    Cardiovascular:
    • Profound Hypotension: Unresponsive to fluids and vasopressors.
    • Severe Tachycardia or Bradycardia: With eventual cardiac arrest.
    • Absent Peripheral Pulses.
    Neurological:
    • Unconsciousness, Coma.
    • Fixed, Dilated Pupils.
    • Loss of Reflexes.
    Respiratory:
    • Gasping for Air (Agonal Respirations): Severe respiratory distress.
    • Respiratory Failure.
    Renal:
    • Anuria: Complete cessation of urine production.
    • Acute Kidney Injury.
    Metabolic:
    • Severe Lactic Acidosis: Uncorrectable.
    • Electrolyte Imbalances.
    Other:
    • Disseminated Intravascular Coagulation (DIC): Widespread clotting and bleeding.
    • Multi-Organ System Failure (MOSF).
    Special Considerations: Warm Shock (Septic Shock in Early Stages)

    While most forms of shock present with cool, clammy skin due to vasoconstriction, early septic shock (hyperdynamic or "warm shock" phase) can present differently due to the profound systemic vasodilation:

    • Warm, Dry, Flushed Skin: Due to peripheral vasodilation.
    • Rapid, Strong (Bounding) Pulse: Indicating a hyperdynamic state and decreased systemic vascular resistance.
    • Fever: Evidence of underlying infection.
    • Hyperventilation: To compensate for metabolic acidosis.
    • Despite these initial "warm" signs, tissue perfusion is still inadequate at the microcirculatory level, and this phase rapidly progresses to decompensated ("cold") shock if not aggressively treated.

    MANAGEMENT OF SHOCK

    AIMS
    • To treat the cause
    • To improve cardiac function
    • To improve tissue perfusion
    Emergency treatment for shock
    • Help patient to lie down and place patient in supine position
    • Cover patient and keep him or her warm
    • Raise and support her legs as high as possible
    • Administer oxygen if possible
    • Determine underlying cause and treat if possible e.g. applying pressure for bleeding.
    • Lessen any tight clothing, undo anything that constrict the neck, chest and wrist
    • Monitor breathing, pulse and response
    • Monitor and record vital observation like pulse breathing, monitor level of response, if the casualty become unconscious, open the airway and check breathing.
    General management
    • Treat the cause e.g. arrest haemorrhage, drain pus etc.
    • Fluid replacement e.g. plasma normal saline dextrose ringers lactate, plasma expanders maximum 1 liter can be given in 24hours.
    • Blood transfusion is done whenever necessary, hypotonic solutions like dextrose are poor volume expanders and so should not be used in shock.
    • Inotropic agents e.g. dopamine, dobutamine, adrenaline infusions.
    • Correction of acid base balance. Acidosis is corrected by using 8.4 sodium bicarbonate intravenously.
    • Steroid is often life saving. 500- 1000mg of hydrocortisone can be given. It improves perfusion, reduces the capillary leakage and systemic inflammatory effects.
    • Antibiotics in patients with patients with sepsis; proper control of blood sugar and ketosis in diabetic patients.
    • Catheterization to measure urine output (30 – 50mls/hour or > 0.5 ml/kg/ hour should be maintained).
    • Nasal oxygen to improve oxygenation or ventilator support with intensive care unit monitoring has to be done.
    • Haemodialysis (a process of removing a waste part e.g. kidney) may be necessary if kidneys are not functioning.
    • Control pain using morphine (4mg iv).
    • Injection ranitidine iv or omeprazole iv or pantoprazole iv.
    • Activated c protein, it is beneficial as it prevents the release of inflammatory response.
    • Diuretics, mannitol is an osmotic that neither absorbed in the renal tubules nor metabolized. It may be given when acidosis and Oliguria have been corrected but if oliguria persist frusemide may also be given.
    • Anticoagulants may occasionally be indicated if micro- circulatory thrombosis is suspected.

    Prevention of shock

    Pre operative measures
    • Take thorough history which include biographic data, medical history, obstetric history, gynaecological.
    • Assess the level of consciousness.
    • Take the baseline vital observation which include temperature, pulse, respiration and blood.
    • General body assessment from head to toe to rule out abnormalities like oedema, hemorrhage, cyanosis and pallor.
    • If there is external heamorrhage arrest the bleeding by positioning the patient.
    • Empty the bladder by passing a catheter.
    • Antibiotic prophylaxis is given to prevent sepsis.
    • Take investigation such as hemoglobin estimation, cross matching, blood grouping and cross matching, clotting factor, malaria slide etc.
    • Give anxiolytics to allay anxiety and give pain killer to reduce pain.
    • Resuscitate patient with iv fluids.
    • Reassure the patient.
    • The patient should be educated about physical exercises which are done post operatively.
    • Circulatory collapse should be avoided by strenuous measures if all possible.
    • Preoperatively patient should be fit as possible from the point of view of the circulatory system: His blood should be a adequate in quality and volume, His tissues should be hydrated adequately, He should be mobile so that there is no stagnation in the circulatory system.
    Intra operatively
    • Patient is kept warm on his journey from the ward to the theater and back.
    • Fear is allied and tranquiller are commonly used pre- operatively.
    • The blood pressure is monitored continuously and recorded more so for the serious cases.
    • Blood and fluid replacement is commenced in good time and the patient is monitored using fluid balance chart.
    • Major operations are commenced only after satisfactory infusions have been established.
    • The head of the bed is lowered if the blood pressure falls (Trendelenburg position).
    • The anesthetist induces and maintains an adequate level of anesthesia ensuring good oxygenation and tissue perfusion.
    Post operatively measures
    • Fluid and electrolyte replacement (saline, 5% dextrose, Hartman solution, plasma and blood as indicated).
    • Position the patient in a recovery position.
    • Maintain air way patent.
    • Give antibiotics to prevent infections.
    • Give inflammatory drugs.
    • Check the conscious level of the patient.
    • Initiate exercise like coughing, deep breathing and ambulation to aid normal circulation.
    • Rest and relieve of pain are continued to prevent shock.

    General Nursing Considerations and Principles for Patients in Shock

    Nursing care for a patient in shock is complex, dynamic, and requires rapid assessment, intervention, and continuous monitoring. The primary goals are to optimize tissue perfusion, restore hemodynamic stability, identify and treat the underlying cause, and prevent complications. Nurses work collaboratively with the medical team to implement a comprehensive plan of care.

    Nursing Diagnoses)

    Nursing diagnoses guide the individualized care plan for patients. Examples for a patient in shock might include:

    • Decreased Cardiac Output related to altered preload, afterload, contractility, or heart rate, as evidenced by hypotension, tachycardia, altered mental status, decreased urine output, and cool, clammy skin.
    • Ineffective Tissue Perfusion (Cardiac, Cerebral, Renal, Gastrointestinal, Peripheral) related to hypovolemia, impaired cardiac pump function, maldistribution of blood flow, or obstruction, as evidenced by pallor, cyanosis, delayed capillary refill, weak peripheral pulses, altered mental status, oliguria, and increased serum lactate.
    • Impaired Gas Exchange related to ventilation/perfusion mismatch, increased metabolic demand, or pulmonary edema, as evidenced by tachypnea, dyspnea, abnormal blood gas values, and cyanosis.
    • Deficient Fluid Volume related to active fluid loss, failure of regulatory mechanisms, or third-space fluid shift, as evidenced by hypotension, tachycardia, decreased urine output, and dry mucous membranes.
    • Risk for Infection related to invasive procedures, compromised immune status, or presence of underlying infection.
    • Acute Confusion related to decreased cerebral perfusion, metabolic imbalances, or hypoxia, as evidenced by disorientation, agitation, or altered level of consciousness.
    • Risk for Imbalanced Body Temperature related to altered metabolic rate, infection, or environmental factors.
    • Anxiety/Fear related to critical illness, threat of death, or unpredictable prognosis.

    Nursing Interventions (General Principles - specific actions depend on the type of shock)

    Interventions are aimed at supporting vital organ function, addressing the underlying cause, and minimizing further deterioration. These often fall into categories of hemodynamic support, respiratory support, infection control, and monitoring.

    1. Optimize Hemodynamic Status and Perfusion:
    • Fluid Resuscitation: Administer intravenous fluids (crystalloids or colloids) as prescribed and monitor response (e.g., blood pressure, heart rate, urine output, central venous pressure).
    • Vasopressors/Inotropes: Administer vasoactive medications (e.g., norepinephrine, dopamine, dobutamine) as prescribed to improve blood pressure and cardiac output, titrating carefully to desired effect and continuously monitoring for adverse effects (e.g., arrhythmias, tissue ischemia).
    • Blood Product Administration: Administer blood transfusions (e.g., packed red blood cells, plasma, platelets) for hemorrhagic shock as indicated.
    • Positioning: Position the patient to optimize cardiac output and venous return (e.g., modified Trendelenburg for hypovolemic shock if tolerated and not contraindicated).
    • Maintain Body Temperature: Prevent hypothermia, which can worsen acidosis and coagulopathy. Use warming blankets if necessary.
    2. Support Respiratory Function and Oxygenation:
    • Oxygen Therapy: Administer high-flow oxygen via appropriate device (e.g., non-rebreather mask).
    • Airway Management: Assess and maintain a patent airway. Prepare for and assist with intubation and mechanical ventilation if respiratory failure is imminent or present.
    • Ventilator Management: Monitor ventilator settings, ensure proper oxygenation and ventilation, and prevent ventilator-associated complications.
    • Arterial Blood Gas (ABG) Monitoring: Frequently assess ABG results to monitor oxygenation, ventilation, and acid-base balance.
    3. Monitor and Assess Continuously:
    • Vital Signs: Monitor heart rate, blood pressure (preferably arterial line), respiratory rate, and oxygen saturation continuously and frequently.
    • Cardiac Monitoring: Continuous ECG monitoring for arrhythmias and signs of ischemia.
    • Neurological Status: Assess level of consciousness, pupillary response, and motor function frequently to detect changes in cerebral perfusion.
    • Urine Output: Insert an indwelling urinary catheter and monitor hourly urine output as a sensitive indicator of renal perfusion and overall hemodynamic status.
    • Skin Assessment: Monitor skin color, temperature, turgor, and capillary refill for changes in perfusion.
    • Laboratory Values: Monitor serial laboratory tests (e.g., CBC, electrolytes, lactate, renal and liver function tests, coagulation studies) to track response to treatment and detect complications.
    • Fluid Balance: Accurately track all intake and output.
    • Pain Assessment: Administer analgesia as needed, considering its effects on hemodynamics.
    4. Identify and Treat the Underlying Cause:
  • For Septic Shock:
    • Administer broad-spectrum antibiotics promptly after obtaining cultures.
    • Identify and control the source of infection (e.g., drainage of abscess, removal of infected line).
  • For Cardiogenic Shock:
    • Administer medications to improve cardiac contractility or reduce afterload as prescribed.
    • Prepare for and assist with interventions like angioplasty, thrombolysis, or intra-aortic balloon pump (IABP) insertion.
  • For Hypovolemic Shock:
    • Identify and stop the source of bleeding or fluid loss.
    • Administer fluids/blood products.
  • For Obstructive Shock:
    • Prepare for and assist with interventions to relieve obstruction (e.g., pericardiocentesis for tamponade, needle decompression/chest tube for tension pneumothorax).
    5. Prevent Complications:
    • Infection Control: Maintain strict aseptic technique for all invasive procedures (e.g., IV line insertion, Foley catheter care, wound care).
    • Skin Integrity: Implement pressure injury prevention strategies (e.g., frequent repositioning, pressure-relieving devices) due to poor perfusion and immobility.
    • Nutrition: Initiate enteral or parenteral nutrition as soon as feasible to support metabolic needs and gut integrity.
    • Psychological Support: Provide emotional support to the patient and family, explain procedures, and answer questions honestly.
    • Deep Vein Thrombosis (DVT) Prophylaxis: Administer prophylactic anticoagulants or use pneumatic compression devices as ordered.
    6. Documentation and Communication:
    • Document all assessments, interventions, and patient responses accurately and in a timely manner.
    • Communicate effectively with the interdisciplinary team (physicians, respiratory therapists, pharmacists, etc.) regarding patient status, changes, and concerns.
  • Surgical Shock Read More »

    GANGRENE

    GANGRENE

    Nursing Notes - Asepsis & Investigations

    GANGRENE

    Definition
  • Gangrene is necrosis and subsequent decay of body tissues caused by infection or thrombosis or lack of blood flow.
  • Gangrene refers to the localized death and decomposition of body tissue resulting from obstructed circulation or bacterial infection.
  • Gangrene is a condition that involves death and decay of tissue usually in the extremities due to loss of blood supply.
  • The best of all possible treatments is revascularization of the affected organ, which can reverse some of the effects of necrosis and allow healing.
  • Gangrene is a complication of necrosis “cell death” characterized by the decay of body tissues, which become black and appearing “rotten”.
  • Causes: Ischemia and Infection as Primary Drivers
  • Ischemia (Insufficient Blood Supply): The most common underlying cause. When tissues do not receive adequate oxygen and nutrients via blood flow, their cells begin to die. This can be due to:
    • Thrombosis: Formation of a blood clot within a blood vessel, obstructing flow.
    • Embolism: A piece of clot, fat, or other material travels and lodges in a blood vessel, blocking it.
    • Atherosclerosis: Hardening and narrowing of arteries, leading to chronic reduction in blood flow, especially to the extremities.
    • Vasoconstriction/Vasospasm: Severe narrowing of blood vessels (e.g., in Raynaud's phenomenon).
    • External Compression: Pressure on blood vessels (e.g., from tight casts, prolonged immobility leading to pressure ulcers).
  • Infection: Certain aggressive bacterial infections can directly cause tissue destruction and necrosis, even with initially intact blood supply. The bacteria produce toxins that kill cells and tissues. This is particularly true for:
    • Gas Gangrene: Caused predominantly by *Clostridium perfringens* and other anaerobic bacteria, which produce potent toxins and gas within tissues.
    • Streptococcal and Staphylococcal Infections: While less common as a primary cause of widespread gangrene compared to clostridial species, severe invasive infections (e.g., necrotizing fasciitis) can rapidly lead to tissue death.
  • Trauma/Injury: Severe crush injuries, frostbite, burns, or other physical or chemical violence can directly damage tissues and blood vessels, creating an environment ripe for ischemia and/or infection.
  • Combination of Factors: Often, gangrene arises from a combination of compromised circulation and secondary bacterial infection, where ischemic tissue becomes highly susceptible to colonization by pathogens.
  • Types of Gangrene

    Dry Gangrene
    • Dry gangrene begins at the distal part of the limb due to ischemia and often occurs in the toes and feet of elderly patients due to arteriosclerosis (abnormal thickening and hardening of the arterial walls).
    • Dry gangrene spreads slowly until it reaches the point where the blood supply is inadequate to keep tissue viable.
    • The affected part is dry, shrunken and dark black, resembling mummified flesh.
    • If the blood flow is interrupted for a reason other than severe bacterial infection, the result is a case of dry gangrene.
    • People with impaired peripheral blood flow, such as diabetics, are at greater risk of contracting dry gangrene.
    • The early signs are a dull ache and sensation of coldness in the affected area.
    • If caught early, the process can sometimes be reversed by vascular surgery.
    • If necrosis sets in, the affected tissue must be removed and treated like a case of wet gangrene.
    Wet Gangrene
    • Wet gangrene occurs in naturally moist tissue and organs such as the mouth, bowel, lungs, cervix, and vulva.
    • Bedsores occurring on body parts such as the sacrum, buttocks and heels (not in “moist” areas) are also categorized as wet gangrene infections.
    • In wet gangrene, the tissue is infected by microorganisms, which cause tissue to swell and emit a foul odour.
    • Wet gangrene usually develops rapidly due to blockage of venous and/or arterial blood flow.
    • The affected part is saturated with stagnant blood which promotes the rapid growth of bacteria.
    • The toxic products formed by bacteria are absorbed causing systemic manifestation of bacteria and finally death.
    • The affected part is soft, putrid, rotten and dark.
    • The darkness in wet gangrene occurs due to the same mechanism as in dry gangrene.
    Gas Gangrene
    • Gas gangrene is a bacterial infection that produces gas within tissues.
    • It is a deadly form of gangrene usually caused by bacteria.
    • Infection spreads rapidly as the gases produced by bacteria expand and effect healthy tissue.
    • Gas gangrene is caused by environmental bacteria; Clostridium perfringens.
    • It can also be from; Group A Streptococcus, Staphylococcus aureus & Vibrio vulnificus.
    • These Bacteria are mostly found in soil.
    • These environmental bacteria enter the muscle through a wound and cause necrotic tissue and powerful toxins.
    • These toxins destroy nearby tissue, generating gas at the same time.
    • Gas gangrene can cause necrosis, gas production, and sepsis.
    • Progression to toxemia and shock is often very rapid.
    • Because of its ability to quickly spread to surrounding tissues, gas gangrene should be treated as a medical emergency.
    Internal Gangrene
  • Description: Gangrene affecting one or more internal organs, such as the intestines, gallbladder, appendix, or other abdominal organs.
  • Causes: Occurs when blood flow to the organ is blocked, leading to ischemia and subsequent necrosis. Common causes include:
    • Strangulated Hernia: A loop of intestine becomes trapped and its blood supply is cut off.
    • Volvulus: Twisting of the intestine.
    • Intussusception: A portion of the intestine telescopes into another.
    • Ischemic Colitis: Reduced blood flow to the colon.
    • Acute Mesenteric Ischemia: Blockage of major arteries supplying the intestines.
  • Clinical Significance: A surgical emergency. Necrotic bowel or organs can perforate, leading to peritonitis and severe sepsis.
  • Fournier's Gangrene
  • Description: A rare, but rapidly progressive and life-threatening form of necrotizing fasciitis (a severe soft tissue infection) affecting the perineum, external genitalia, and perianal region.
  • Etiology: Typically polymicrobial, involving a combination of aerobic and anaerobic bacteria, originating from infections in the genitourinary tract, perianal area, or skin breaks.
  • Affected Population: More common in men, but can occur in women and children. Risk factors include diabetes, alcoholism, immunosuppression, and local trauma.
  • Clinical Course: Characterized by sudden onset of severe pain, swelling, erythema, and crepitus in the affected areas, rapidly progressing to necrosis, skin sloughing, and systemic toxicity.
  • Urgency: A surgical emergency requiring aggressive debridement, broad-spectrum antibiotics, and supportive care.
  • Meleney's Gangrene (Progressive Bacterial Synergistic Gangrene)
    • Description: A rare, chronic, and progressively spreading necrotizing soft tissue infection, often occurring as a complication of surgery (especially abdominal surgery) or trauma.
    • Etiology: Caused by a synergistic infection, typically involving a microaerophilic non-hemolytic Streptococcus and a Staphylococcus aureus.
    • Clinical Presentation: Patients develop exquisitely painful, rapidly enlarging skin lesions, often one to two weeks after an operation. The lesion has a characteristic appearance: a central area of necrosis and ulceration surrounded by a purplish zone, which is then surrounded by an outer ring of erythema.
    • Management: Requires aggressive debridement and targeted antibiotic therapy.

    Risk Factors & Clinical Picture: Who is at Risk and What to Look For

    General Risk Factors for Gangrene Development

    Any condition that impairs blood flow, compromises the immune system, or increases susceptibility to severe infections can elevate the risk of gangrene.

  • Vascular Diseases:
    • Atherosclerosis: Hardening and narrowing of arteries, leading to Peripheral Arterial Disease (PAD).
    • Peripheral Arterial Disease (PAD): Critical reduction of blood flow to the limbs.
    • Raynaud's Phenomenon: Severe vasoconstriction in fingers and toes, though typically not severe enough to cause gangrene unless prolonged and severe.
    • Severe Vasculitis: Inflammation of blood vessels.
  • Metabolic Conditions:
    • Diabetes Mellitus: A leading cause. Imbalanced blood sugar levels damage blood vessels (micro- and macroangiopathy) and nerves (neuropathy), reducing sensation and blood flow, making feet especially vulnerable to injury and infection.
  • Lifestyle Factors:
    • Smoking: Significantly damages blood vessels, accelerates atherosclerosis, and reduces oxygen delivery to tissues.
    • Obesity: Contributes to diabetes and vascular disease.
    • Alcoholism: Can lead to malnutrition and a weakened immune system.
    • Intravenous Drug Use (IVDU): Can cause local infections, abscesses, and damage to blood vessels at injection sites.
  • Compromised Immunity:
    • Weak Immune System: Conditions like HIV/AIDS, cancer, chemotherapy, or long-term corticosteroid use impair the body's ability to fight infection.
  • Trauma & Local Injury:
    • Serious Injury or Trauma: Crush injuries, deep penetrating wounds, frostbite, severe burns, and scalds can directly damage tissues and blood vessels, leading to ischemia and providing entry points for bacteria.
    • Surgery: While rare, can introduce bacteria or compromise blood supply if not managed carefully.
  • Infections:
    • Direct infection by highly virulent bacteria (e.g., *Clostridium perfringens*, Group A Streptococcus) can cause gangrene even in initially healthy tissue, particularly in necrotizing fasciitis.
  • Signs and Symptoms: Recognizing the Clinical Presentation

    Symptoms typically begin suddenly and can worsen rapidly, especially in wet or gas gangrene. Clinical presentation varies by type but generally includes:

  • Localized Signs (Specific to the affected area):
    • Pain: Moderate to severe pain, which can be disproportionate to the visible injury (especially in gas gangrene or necrotizing fasciitis). Pain may initially be dull or aching, progressing to intense, throbbing, or burning.
    • Skin Discoloration:
      • Dry Gangrene: Initial pallor, progressing to dull red, purple, then ultimately black, resembling mummified tissue.
      • Wet/Gas Gangrene: Initial pallor or bronze discoloration, rapidly progressing to dark red, purplish, or black.
    • Swelling (Edema): Progressive and often rapid swelling around the affected area. The tissue may feel tense and firm.
    • Blisters/Bullae: Formation of vesicles or large bullae (blisters) filled with brown, foul-smelling, or serosanguineous (blood-tinged) fluid.
    • Foul Odor: A putrid, sweetish, mousy, or decaying smell emanating from the affected tissue, particularly in wet and gas gangrene due to bacterial activity.
    • Skin Breakdown: Ulceration, sloughing of skin, and visible decay.
    • Crepitus: A palpable crackling or crunching sensation when the affected area is pressed, indicating the presence of gas in the subcutaneous tissues (a hallmark of gas gangrene).
  • Systemic Signs (Indicating widespread infection/sepsis):
    • Fever: Moderate to high-grade fever, often accompanied by chills and rigors.
    • Tachycardia: Rapid heart rate.
    • Tachypnea: Rapid breathing.
    • Hypotension: Low blood pressure, especially as sepsis progresses to septic shock.
    • Diaphoresis: Profuse sweating.
    • Altered Mental Status: Confusion, disorientation, stupor, or delirium, progressing to coma in severe cases.
    • Oliguria/Anuria: Decreased or absent urine output due to kidney injury.
    • Nausea, Vomiting, Abdominal Pain: If internal organs are affected.
    • General Malaise: Feeling unwell, weakness, fatigue.
  • Diagnostics: Confirming the Diagnosis and Guiding Treatment

    Diagnosis of gangrene is primarily clinical, but diagnostic tests are crucial for confirming the type, identifying the causative organism, assessing the extent of tissue damage, and guiding treatment.

  • Clinical Assessment: History taking (risk factors, onset of symptoms, pain characteristics) and physical examination (visual inspection, palpation for crepitus, assessment of pulses, temperature, sensation).
  • Laboratory Tests:
    • Complete Blood Count (CBC): Marked leukocytosis (elevated white blood cell count) with a left shift is typical, indicating bacterial infection. Anemia may also be present.
    • Inflammatory Markers: Elevated C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Procalcitonin levels can also be useful in assessing the severity of bacterial infection.
    • Blood Cultures: To identify bacteremia and systemic infection. Crucial for guiding systemic antibiotic therapy.
    • Electrolytes, Renal Function Tests (BUN, Creatinine): To assess for fluid and electrolyte imbalances and kidney injury, especially with sepsis.
    • Liver Function Tests (LFTs): To assess for liver involvement.
    • Blood Glucose: Especially important for diabetic patients to assess control.
  • Microbiological Studies:
    • Gram Stain of Fluid/Tissue Aspirate: Rapid identification of bacterial morphology (e.g., Gram-positive rods suggestive of Clostridium).
    • Aerobic and Anaerobic Tissue/Fluid Culture and Sensitivity: Definitive identification of causative organisms and their susceptibility to antibiotics. This is critical for targeted therapy.
  • Imaging Studies:
    • Plain X-rays: Can reveal gas in soft tissues (subcutaneous emphysema), especially useful for suspected gas gangrene. May also show foreign bodies or underlying bone involvement (osteomyelitis).
    • Ultrasound: Can show fluid collections, tissue edema, and sometimes gas. Also useful for assessing blood flow (Doppler ultrasound).
    • Computed Tomography (CT) Scan: Provides detailed cross-sectional images, clearly delineating the extent of soft tissue involvement, fascial plane involvement, and the presence and distribution of gas. Essential for pre-surgical planning.
    • Magnetic Resonance Imaging (MRI): Offers superior soft tissue contrast, invaluable for assessing muscle involvement, edema, and differentiating between viable and non-viable tissue. Can be particularly useful for identifying necrotizing fasciitis early.
    • Angiography (CT Angiography, MR Angiography, Conventional Angiography): To visualize arterial blood flow and identify blockages in cases of suspected dry gangrene or critical limb ischemia, guiding revascularization procedures.
  • Tissue Biopsy: In ambiguous cases, a biopsy of affected tissue for histological examination can confirm necrosis and rule out other conditions.
  • Management of Gangrene

    Managing necrotizing infections like gangrene requires a multi-faceted approach, integrating medical, surgical, and comprehensive nursing interventions. Historically, methods like maggot therapy (biodebridement) were used for necrotic tissue. While largely superseded by antibiotics, maggot therapy has seen a resurgence in specific chronic wound care cases due to its efficacy in consuming only devitalized tissue.

    I. Medical & Surgical Management (Collaborative Care)

    A. On Admission & Initial Assessment:
    • Patient Placement: Admit to a surgical ward; consider isolation precautions (e.g., contact precautions) if the infection is highly virulent or there's significant exudate/drainage. Barrier nursing principles are paramount to prevent cross-contamination.
    • Positioning: Position the patient for comfort and to optimize circulation to unaffected areas. Elevate affected limbs if swelling is present, unless contraindicated by arterial insufficiency. Frequent repositioning is essential to prevent pressure injuries.
    • Vital Signs & General Observation: Obtain and meticulously record baseline vital signs (temperature, pulse, respiration, blood pressure, oxygen saturation). Observe for signs of systemic infection (JACCOLD: Jaundice, Anemia, Cyanosis, Clubbing, Oedema, Lymphadenopathy, Dehydration – though for acute infection, focus more on fever, tachycardia, tachypnea, hypotension, altered mental status). Assess for signs of sepsis and septic shock.
    • Intravenous Access: Establish immediate IV access for fluid resuscitation, antibiotic administration, and other necessary medications, according to physician's orders.
    • Pain Assessment: Perform a comprehensive pain assessment using an appropriate pain scale.
    B. Investigations:

    Prompt diagnostic testing is crucial for identifying the causative organism and assessing the extent of systemic involvement.

    • Wound Culture & Sensitivity: Aspirate fluid or tissue from the wound for Gram stain, aerobic and anaerobic culture, and sensitivity testing to guide targeted antibiotic therapy.
    • Blood Cultures: Obtain blood cultures (typically two sets from different sites) to identify bacteremia and potential sepsis.
    • Imaging Studies:
      • X-ray: To determine the presence of gas (crepitus/bubbles) in soft tissues (suggestive of gas gangrene) or bone involvement (osteomyelitis).
      • CT/MRI: Provide more detailed visualization of soft tissue involvement, extent of necrosis, and gas patterns.
    • Hematological Studies:
      • Complete Blood Count (CBC): To assess for leukocytosis (elevated WBC count, indicating infection), anemia (due to chronic disease or blood loss), and platelet count.
      • Coagulation Profile (PT/INR, PTT): To assess clotting status, especially in severe sepsis or disseminated intravascular coagulation (DIC).
      • C-Reactive Protein (CRP) & Erythrocyte Sedimentation Rate (ESR): Inflammatory markers indicating systemic inflammation.
    • Biochemical Studies:
      • Electrolytes, Renal Function Tests (BUN, Creatinine): To monitor for fluid and electrolyte imbalances and assess kidney function, especially with antibiotic use or sepsis.
      • Liver Function Tests (LFTs): To assess for liver involvement/damage.
      • Blood Glucose: Especially important for diabetic patients, as hyperglycemia can worsen infections.
    • Type & Crossmatch: Prepare for potential blood transfusions to correct anemia or support hemodynamic stability, especially in severe cases or impending surgery.
    C. Treatment (Pharmacological & Surgical):
    • Antibiotic Therapy:
      • Administer broad-spectrum antibiotics intravenously immediately after cultures are drawn, without waiting for results. Examples include high-dose penicillin (e.g., Penicillin G 2.4 million units IV q4-6h) for clostridial infections, along with synergistic agents like clindamycin to inhibit toxin production.
      • Cephalosporins (e.g., ceftriaxone), fluoroquinolones (e.g., ciprofloxacin), and metronidazole (for anaerobic coverage, typically 500mg IV q6-8h) are often part of combination therapy, tailored to suspected pathogens.
      • Antibiotics alone are often insufficient because they may not adequately penetrate ischemic or necrotic muscles.
    • Antitoxins: In specific cases (e.g., gas gangrene caused by *Clostridium perfringens*), antitoxin administration may be considered, though its efficacy is debated and it's less commonly used than antibiotics.
    • Analgesia: Aggressive pain management is crucial. Administer analgesics as prescribed, such as diclofenac 75mg IM, or opioids like tramadol IV or IM, titrated to effect. Consider patient-controlled analgesia (PCA) for severe pain.
    • Blood Transfusion: Administer packed red blood cells as indicated to correct anemia and improve oxygen-carrying capacity, especially in hemodynamically unstable patients.
    • Surgical Intervention:
      • Emergent Debridement: The most critical intervention. Surgical debridement to remove all necrotic, infected tissue is often life-saving. This involves extensive incision and drainage to establish a larger wound opening for aeration (as many causative bacteria are anaerobic) and promote drainage. Repeat debridements may be necessary.
      • Amputation: If the limb is extensively gangrenous, non-viable, or threatening the patient's life due to uncontrolled infection, amputation (surgical removal of the limb) may be necessary to prevent further spread and save the patient's life.
      • Revascularization: For arterial gangrene, restoring blood flow to the affected area (e.g., bypass surgery, angioplasty) is the best treatment option, as it addresses the underlying ischemia. This may precede or follow debridement depending on the clinical situation.
    • Hyperbaric Oxygen Therapy (HBOT): Administration of 100% oxygen at increased atmospheric pressure. This can inhibit the growth of anaerobic bacteria, enhance the killing power of phagocytes, and promote angiogenesis and wound healing. It's often used as an adjunctive therapy, particularly in gas gangrene.

    II. Nursing Diagnoses & Interventions

    A. Impaired Tissue Integrity (Related to necrotic tissue, infection, impaired circulation)
  • Interventions:
    • Wound Care & Debridement Assistance:
      • Assist physician/surgeon with debridement procedures (surgical, mechanical, enzymatic, autolytic).
      • Perform meticulous wound care with strict aseptic technique (medical and surgical asepsis). Ensure all equipment and linens are autoclaved and sterile.
      • Irrigate wounds as prescribed (e.g., with normal saline, hydrogen peroxide for specific anaerobic infections).
      • Apply prescribed dressings (e.g., moist-to-dry, specialized antimicrobial dressings, negative pressure wound therapy [NPWT]).
      • Observe the wound closely for bleeding, oozing, increased exudate, foul odor, changes in color, and signs of spreading infection (e.g., cellulitis, crepitus). Document findings thoroughly.
      • Monitor drainage and secretions. Implement appropriate isolation precautions (e.g., contact precautions) based on institutional policy and pathogen.
      • Educate patient and family on proper hand hygiene and avoiding contamination of the wound.
    • Circulatory Management:
      • Elevate affected limb if edema is present (unless contraindicated by arterial disease) to promote venous return.
      • Assess peripheral pulses, capillary refill, skin color, and temperature regularly in the affected and unaffected limbs.
      • Avoid restrictive clothing or bedding that could impede circulation.
    • Nutritional Support: Ensure adequate protein, calorie, vitamin (especially C and A), and mineral (zinc) intake to promote wound healing. Consult with a dietitian.
  • B. Acute Pain (Related to tissue damage, surgical incisions, infection)
  • Interventions:
    • Pain Assessment & Management:
      • Regularly assess pain intensity, characteristics, and location using an appropriate pain scale (e.g., 0-10 numeric scale).
      • Administer prescribed analgesics proactively and on a schedule, rather than waiting for severe pain. Utilize a multimodal approach (e.g., opioids, NSAIDs, adjuncts).
      • Evaluate the effectiveness of pain medication and adjust as needed in collaboration with the physician.
      • Teach and encourage non-pharmacological pain relief methods (e.g., relaxation techniques, guided imagery, distraction, repositioning, application of heat/cold if appropriate and safe).
    • Comfort Measures:
      • Ensure patient is in a comfortable position, using pillows for support.
      • Maintain a quiet and calming environment. Minimize unnecessary disturbances.
  • C. Risk for Infection / Sepsis (Related to invasive procedures, compromised immune status, necrotic tissue)
  • Interventions:
    • Infection Control:
      • Adhere to strict hand hygiene before and after all patient contact and procedures.
      • Maintain sterile technique for all invasive procedures (e.g., dressing changes, IV insertion, catheterization).
      • Monitor for signs of systemic infection (fever, chills, tachycardia, hypotension, altered mental status, increased WBC count).
      • Administer prescribed antibiotics on time and monitor for adverse effects.
      • Maintain meticulous Foley catheter care (if applicable) to prevent urinary tract infections.
      • Ensure proper care of all IV lines to prevent phlebitis or line infections.
    • Fluid & Electrolyte Balance: Monitor intake and output, urine specific gravity, and electrolyte levels. Administer IV fluids as prescribed to maintain hydration and perfusion.
    • Early Ambulation: Encourage early mobilization as tolerated to prevent complications like pneumonia and deep vein thrombosis (DVT), which can worsen systemic compromise.
  • D. Disturbed Sleep Pattern (Related to pain, hospital environment, anxiety)
  • Interventions:
    • Environmental Modifications:
      • Optimize sleep environment: dim lights, control noise on the ward (e.g., wear soft-soled shoes, lower voices, prompt treatment of alarms).
      • Bundle nursing care to minimize nighttime interruptions.
    • Comfort & Relaxation:
      • Administer pain medication before sleep if pain is a factor.
      • Offer warm beverages (if allowed), back rubs, or a quiet conversation.
      • Suggest relaxation techniques or play soft, calming music for those who find it helpful.
    • Daytime Activities: Encourage appropriate daytime activity and exposure to natural light to help regulate circadian rhythm.
  • E. Self-Care Deficit (Related to pain, weakness, impaired mobility)
  • Interventions:
    • Hygiene & Personal Care:
      • Assist with daily bed baths or showers as tolerated. Maintain personal hygiene.
      • Perform oral care at least twice daily, or more frequently if patient is NPO or has a dry mouth.
      • Provide meticulous skin care, especially for pressure areas, by repositioning every 2 hours and using pressure-relieving devices.
    • Elimination: Ensure regular bowel and bladder elimination. Offer bedpan/urinal frequently or assist to commode/bathroom as mobility allows. Monitor for constipation or urinary retention.
    • Encourage Independence: Promote patient independence in self-care activities as much as possible to foster a sense of control and recovery.
  • III. Long-Term Management & Discharge Planning

    A. Patient Education:

    Comprehensive patient and family education is vital for successful recovery and prevention of recurrence.

    • Medication Compliance: Emphasize the importance of completing the full course of antibiotics, even if symptoms improve, to prevent antibiotic resistance and recurrence.
    • Wound Care at Home: Provide clear, step-by-step instructions (and demonstration) on wound care, dressing changes, and signs of infection to report immediately.
    • Activity Restrictions: Explain any activity restrictions or limitations on the affected limb/area.
    • Nutrition: Reinforce the importance of a balanced diet to support healing.
    • Recognition of Complications: Educate on signs and symptoms of potential complications (e.g., worsening infection, fever, increasing pain, changes in wound, signs of sepsis) and when to seek immediate medical attention.
    • Lifestyle Modifications: Discuss management of underlying conditions (e.g., strict glycemic control for diabetics, smoking cessation for PVD).
    B. Follow-up Care:
    • Schedule follow-up appointments with the surgeon, wound care specialist, and primary care provider.
    • Arrange for home health nursing services if indicated for complex wound care or continued monitoring.
    • Provide contact information for emergencies and questions.

    IV. Potential Complications

    Close monitoring for and prompt intervention against complications are essential for positive patient outcomes.

  • Local Complications:
    • Disfiguring or disabling, permanent tissue damage (e.g., loss of limb function, scarring).
    • Osteomyelitis (bone infection).
    • Recurrence of infection.
  • Systemic Complications:
    • Sepsis: Life-threatening organ dysfunction caused by a dysregulated host response to infection.
    • Septic Shock: Sepsis with persistent hypotension requiring vasopressors and elevated lactate.
    • Acute Kidney Injury/Failure (due to sepsis or nephrotoxic medications).
    • Liver damage/Jaundice (due to sepsis, severe infection, or certain medications).
    • Disseminated Intravascular Coagulation (DIC).
    • Acute Respiratory Distress Syndrome (ARDS).
  • Neurological Complications (often due to severe sepsis/shock):
    • Stupor
    • Delirium
    • Coma
  • Functional Complications:
    • Chronic pain.
    • Impaired mobility and functional limitations requiring rehabilitation.
    • Psychological distress (anxiety, depression, body image issues).
  • GANGRENE Read More »

    Want notes in PDF? Join our classes!!

    Send us a message on WhatsApp
    0726113908

    Scroll to Top
    Enable Notifications OK No thanks